BREAKING: Plugin renamed from compounding-engineering to compound-engineering. Users will need to reinstall with the new name: claude /plugin install compound-engineering Changes: - Renamed plugin directory and all references - Updated documentation counts (24 agents, 19 commands) - Added julik-frontend-races-reviewer to docs 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
8.0 KiB
DSPy.rb LLM Providers
Supported Providers
DSPy.rb provides unified support across multiple LLM providers through adapter gems that automatically load when installed.
Provider Overview
- OpenAI: GPT-4, GPT-4o, GPT-4o-mini, GPT-3.5-turbo
- Anthropic: Claude 3 family (Sonnet, Opus, Haiku), Claude 3.5 Sonnet
- Google Gemini: Gemini 1.5 Pro, Gemini 1.5 Flash, other versions
- Ollama: Local model support via OpenAI compatibility layer
- OpenRouter: Unified multi-provider API for 200+ models
Configuration
Basic Setup
require 'dspy'
DSPy.configure do |c|
c.lm = DSPy::LM.new('provider/model-name', api_key: ENV['API_KEY'])
end
OpenAI Configuration
Required gem: dspy-openai
DSPy.configure do |c|
# GPT-4o Mini (recommended for development)
c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
# GPT-4o (more capable)
c.lm = DSPy::LM.new('openai/gpt-4o', api_key: ENV['OPENAI_API_KEY'])
# GPT-4 Turbo
c.lm = DSPy::LM.new('openai/gpt-4-turbo', api_key: ENV['OPENAI_API_KEY'])
end
Environment variable: OPENAI_API_KEY
Anthropic Configuration
Required gem: dspy-anthropic
DSPy.configure do |c|
# Claude 3.5 Sonnet (latest, most capable)
c.lm = DSPy::LM.new('anthropic/claude-3-5-sonnet-20241022',
api_key: ENV['ANTHROPIC_API_KEY'])
# Claude 3 Opus (most capable in Claude 3 family)
c.lm = DSPy::LM.new('anthropic/claude-3-opus-20240229',
api_key: ENV['ANTHROPIC_API_KEY'])
# Claude 3 Sonnet (balanced)
c.lm = DSPy::LM.new('anthropic/claude-3-sonnet-20240229',
api_key: ENV['ANTHROPIC_API_KEY'])
# Claude 3 Haiku (fast, cost-effective)
c.lm = DSPy::LM.new('anthropic/claude-3-haiku-20240307',
api_key: ENV['ANTHROPIC_API_KEY'])
end
Environment variable: ANTHROPIC_API_KEY
Google Gemini Configuration
Required gem: dspy-gemini
DSPy.configure do |c|
# Gemini 1.5 Pro (most capable)
c.lm = DSPy::LM.new('gemini/gemini-1.5-pro',
api_key: ENV['GOOGLE_API_KEY'])
# Gemini 1.5 Flash (faster, cost-effective)
c.lm = DSPy::LM.new('gemini/gemini-1.5-flash',
api_key: ENV['GOOGLE_API_KEY'])
end
Environment variable: GOOGLE_API_KEY or GEMINI_API_KEY
Ollama Configuration
Required gem: None (uses OpenAI compatibility layer)
DSPy.configure do |c|
# Local Ollama instance
c.lm = DSPy::LM.new('ollama/llama3.1',
base_url: 'http://localhost:11434')
# Other Ollama models
c.lm = DSPy::LM.new('ollama/mistral')
c.lm = DSPy::LM.new('ollama/codellama')
end
Note: Ensure Ollama is running locally: ollama serve
OpenRouter Configuration
Required gem: dspy-openai (uses OpenAI adapter)
DSPy.configure do |c|
# Access 200+ models through OpenRouter
c.lm = DSPy::LM.new('openrouter/anthropic/claude-3.5-sonnet',
api_key: ENV['OPENROUTER_API_KEY'],
base_url: 'https://openrouter.ai/api/v1')
# Other examples
c.lm = DSPy::LM.new('openrouter/google/gemini-pro')
c.lm = DSPy::LM.new('openrouter/meta-llama/llama-3.1-70b-instruct')
end
Environment variable: OPENROUTER_API_KEY
Provider Compatibility Matrix
Feature Support
| Feature | OpenAI | Anthropic | Gemini | Ollama |
|---|---|---|---|---|
| Structured Output | ✅ | ✅ | ✅ | ✅ |
| Vision (Images) | ✅ | ✅ | ✅ | ⚠️ Limited |
| Image URLs | ✅ | ❌ | ❌ | ❌ |
| Tool Calling | ✅ | ✅ | ✅ | Varies |
| Streaming | ❌ | ❌ | ❌ | ❌ |
| Function Calling | ✅ | ✅ | ✅ | Varies |
Legend: ✅ Full support | ⚠️ Partial support | ❌ Not supported
Vision Capabilities
Image URLs: Only OpenAI supports direct URL references. For other providers, load images as base64 or from files.
# OpenAI - supports URLs
DSPy::Image.from_url("https://example.com/image.jpg")
# Anthropic, Gemini - use file or base64
DSPy::Image.from_file("path/to/image.jpg")
DSPy::Image.from_base64(base64_data, mime_type: "image/jpeg")
Ollama: Limited multimodal functionality. Check specific model capabilities.
Advanced Configuration
Custom Parameters
Pass provider-specific parameters during configuration:
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o',
api_key: ENV['OPENAI_API_KEY'],
temperature: 0.7,
max_tokens: 2000,
top_p: 0.9
)
end
Multiple Providers
Use different models for different tasks:
# Fast model for simple tasks
fast_lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
# Powerful model for complex tasks
powerful_lm = DSPy::LM.new('anthropic/claude-3-5-sonnet-20241022',
api_key: ENV['ANTHROPIC_API_KEY'])
# Use different models in different modules
class SimpleClassifier < DSPy::Module
def initialize
super
DSPy.configure { |c| c.lm = fast_lm }
@predictor = DSPy::Predict.new(SimpleSignature)
end
end
class ComplexAnalyzer < DSPy::Module
def initialize
super
DSPy.configure { |c| c.lm = powerful_lm }
@predictor = DSPy::ChainOfThought.new(ComplexSignature)
end
end
Per-Request Configuration
Override configuration for specific predictions:
predictor = DSPy::Predict.new(MySignature)
# Use default configuration
result1 = predictor.forward(input: "data")
# Override temperature for this request
result2 = predictor.forward(
input: "data",
config: { temperature: 0.2 } # More deterministic
)
Cost Optimization
Model Selection Strategy
- Development: Use cheaper, faster models (gpt-4o-mini, claude-3-haiku, gemini-1.5-flash)
- Production Simple Tasks: Continue with cheaper models if quality is sufficient
- Production Complex Tasks: Upgrade to more capable models (gpt-4o, claude-3.5-sonnet, gemini-1.5-pro)
- Local Development: Use Ollama for privacy and zero API costs
Example Cost-Conscious Setup
# Development environment
if Rails.env.development?
DSPy.configure do |c|
c.lm = DSPy::LM.new('ollama/llama3.1') # Free, local
end
elsif Rails.env.test?
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini', # Cheap for testing
api_key: ENV['OPENAI_API_KEY'])
end
else # production
DSPy.configure do |c|
c.lm = DSPy::LM.new('anthropic/claude-3-5-sonnet-20241022',
api_key: ENV['ANTHROPIC_API_KEY'])
end
end
Provider-Specific Best Practices
OpenAI
- Use
gpt-4o-minifor development and simple tasks - Use
gpt-4ofor production complex tasks - Best vision support including URL loading
- Excellent function calling capabilities
Anthropic
- Claude 3.5 Sonnet is currently the most capable model
- Excellent for complex reasoning and analysis
- Strong safety features and helpful outputs
- Requires base64 for images (no URL support)
Google Gemini
- Gemini 1.5 Pro for complex tasks, Flash for speed
- Strong multimodal capabilities
- Good balance of cost and performance
- Requires base64 for images
Ollama
- Best for privacy-sensitive applications
- Zero API costs
- Requires local hardware resources
- Limited multimodal support depending on model
- Good for development and testing
Troubleshooting
API Key Issues
# Verify API key is set
if ENV['OPENAI_API_KEY'].nil?
raise "OPENAI_API_KEY environment variable not set"
end
# Test connection
begin
DSPy.configure { |c| c.lm = DSPy::LM.new('openai/gpt-4o-mini',
api_key: ENV['OPENAI_API_KEY']) }
predictor = DSPy::Predict.new(TestSignature)
predictor.forward(test: "data")
puts "✅ Connection successful"
rescue => e
puts "❌ Connection failed: #{e.message}"
end
Rate Limiting
Handle rate limits gracefully:
def call_with_retry(predictor, input, max_retries: 3)
retries = 0
begin
predictor.forward(input)
rescue RateLimitError => e
retries += 1
if retries < max_retries
sleep(2 ** retries) # Exponential backoff
retry
else
raise
end
end
end
Model Not Found
Ensure the correct gem is installed:
# For OpenAI
gem install dspy-openai
# For Anthropic
gem install dspy-anthropic
# For Gemini
gem install dspy-gemini