Files
claude-engineering-plugin/plugins/compounding-engineering/skills/gemini-imagegen/SKILL.md
Kieran Klaassen 31c363038b [2.8.2] Update gemini-imagegen skill to use Pro model by default
- Changed default model to gemini-2.0-flash-exp-image-generation
- Removed regular Nano Banana model references
- Added explicit options for aspect ratio (1:1 to 21:9)
- Added resolution options (1K default, 2K, 4K)
- Simplified documentation with clear defaults

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-28 21:57:35 -08:00

5.4 KiB

name, description
name description
gemini-imagegen Generate and edit images using the Gemini API (Nano Banana Pro). Use this skill when creating images from text prompts, editing existing images, applying style transfers, generating logos with text, creating stickers, product mockups, or any image generation/manipulation task. Supports text-to-image, image editing, multi-turn refinement, and composition from multiple reference images.

Gemini Image Generation (Nano Banana Pro)

Generate and edit images using Google's Gemini API. The environment variable GEMINI_API_KEY must be set.

Default Model

Model Resolution Best For
gemini-3-pro-image-preview 1K-4K All image generation (default)

Note: Always use this Pro model. Only use a different model if explicitly requested.

Quick Reference

Default Settings

  • Model: gemini-3-pro-image-preview
  • Resolution: 1K (default, options: 1K, 2K, 4K)
  • Aspect Ratio: 1:1 (default)

Available Aspect Ratios

1:1, 2:3, 3:2, 3:4, 4:3, 4:5, 5:4, 9:16, 16:9, 21:9

Available Resolutions

1K (default), 2K, 4K

Core API Pattern

import os
from google import genai
from google.genai import types

client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])

# Basic generation (1K, 1:1 - defaults)
response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=["Your prompt here"],
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
    ),
)

for part in response.parts:
    if part.text:
        print(part.text)
    elif part.inline_data:
        image = part.as_image()
        image.save("output.png")

Custom Resolution & Aspect Ratio

from google.genai import types

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[prompt],
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
        image_config=types.ImageConfig(
            aspect_ratio="16:9",  # Wide format
            image_size="2K"       # Higher resolution
        ),
    )
)

Resolution Examples

# 1K (default) - Fast, good for previews
image_config=types.ImageConfig(image_size="1K")

# 2K - Balanced quality/speed
image_config=types.ImageConfig(image_size="2K")

# 4K - Maximum quality, slower
image_config=types.ImageConfig(image_size="4K")

Aspect Ratio Examples

# Square (default)
image_config=types.ImageConfig(aspect_ratio="1:1")

# Landscape wide
image_config=types.ImageConfig(aspect_ratio="16:9")

# Ultra-wide panoramic
image_config=types.ImageConfig(aspect_ratio="21:9")

# Portrait
image_config=types.ImageConfig(aspect_ratio="9:16")

# Photo standard
image_config=types.ImageConfig(aspect_ratio="4:3")

Editing Images

Pass existing images with text prompts:

from PIL import Image

img = Image.open("input.png")
response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=["Add a sunset to this scene", img],
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
    ),
)

Multi-Turn Refinement

Use chat for iterative editing:

from google.genai import types

chat = client.chats.create(
    model="gemini-3-pro-image-preview",
    config=types.GenerateContentConfig(response_modalities=['TEXT', 'IMAGE'])
)

response = chat.send_message("Create a logo for 'Acme Corp'")
# Save first image...

response = chat.send_message("Make the text bolder and add a blue gradient")
# Save refined image...

Prompting Best Practices

Photorealistic Scenes

Include camera details: lens type, lighting, angle, mood.

"A photorealistic close-up portrait, 85mm lens, soft golden hour light, shallow depth of field"

Stylized Art

Specify style explicitly:

"A kawaii-style sticker of a happy red panda, bold outlines, cel-shading, white background"

Text in Images

Be explicit about font style and placement:

"Create a logo with text 'Daily Grind' in clean sans-serif, black and white, coffee bean motif"

Product Mockups

Describe lighting setup and surface:

"Studio-lit product photo on polished concrete, three-point softbox setup, 45-degree angle"

Advanced Features

Google Search Grounding

Generate images based on real-time data:

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=["Visualize today's weather in Tokyo as an infographic"],
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
        tools=[{"google_search": {}}]
    )
)

Multiple Reference Images (Up to 14)

Combine elements from multiple sources:

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[
        "Create a group photo of these people in an office",
        Image.open("person1.png"),
        Image.open("person2.png"),
        Image.open("person3.png"),
    ],
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
    ),
)

Notes

  • All generated images include SynthID watermarks
  • Image-only mode (responseModalities: ["IMAGE"]) won't work with Google Search grounding
  • For editing, describe changes conversationally—the model understands semantic masking
  • Default to 1K resolution for speed; use 2K/4K when quality is critical