Files
claude-engineering-plugin/plugins/compounding-engineering/skills/agent-native-architecture/references/architecture-patterns.md
Dan Shipper 27d07d068c Add agent-native-architecture skill
New skill teaching prompt-native development patterns:
- Features defined in prompts, not code
- Tools as primitives that enable capability
- "Whatever the user can do, the agent can do"
- Self-modification patterns (advanced tier)
- Refactoring guide for existing codebases

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-08 16:23:31 -08:00

216 lines
8.2 KiB
Markdown

<overview>
Architectural patterns for building prompt-native agent systems. These patterns emerge from the philosophy that features should be defined in prompts, not code, and that tools should be primitives.
</overview>
<pattern name="event-driven-agent">
## Event-Driven Agent Architecture
The agent runs as a long-lived process that responds to events. Events become prompts.
```
┌─────────────────────────────────────────────────────────────┐
│ Agent Loop │
├─────────────────────────────────────────────────────────────┤
│ Event Source → Agent (Claude) → Tool Calls → Response │
└─────────────────────────────────────────────────────────────┘
┌───────────────┼───────────────┐
▼ ▼ ▼
┌─────────┐ ┌──────────┐ ┌───────────┐
│ Content │ │ Self │ │ Data │
│ Tools │ │ Tools │ │ Tools │
└─────────┘ └──────────┘ └───────────┘
(write_file) (read_source) (store_item)
(restart) (list_items)
```
**Key characteristics:**
- Events (messages, webhooks, timers) trigger agent turns
- Agent decides how to respond based on system prompt
- Tools are primitives for IO, not business logic
- State persists between events via data tools
**Example: Discord feedback bot**
```typescript
// Event source
client.on("messageCreate", (message) => {
if (!message.author.bot) {
runAgent({
userMessage: `New message from ${message.author}: "${message.content}"`,
channelId: message.channelId,
});
}
});
// System prompt defines behavior
const systemPrompt = `
When someone shares feedback:
1. Acknowledge their feedback warmly
2. Ask clarifying questions if needed
3. Store it using the feedback tools
4. Update the feedback site
Use your judgment about importance and categorization.
`;
```
</pattern>
<pattern name="two-layer-git">
## Two-Layer Git Architecture
For self-modifying agents, separate code (shared) from data (instance-specific).
```
┌─────────────────────────────────────────────────────────────┐
│ GitHub (shared repo) │
│ - src/ (agent code) │
│ - site/ (web interface) │
│ - package.json (dependencies) │
│ - .gitignore (excludes data/, logs/) │
└─────────────────────────────────────────────────────────────┘
git clone
┌─────────────────────────────────────────────────────────────┐
│ Instance (Server) │
│ │
│ FROM GITHUB (tracked): │
│ - src/ → pushed back on code changes │
│ - site/ → pushed, triggers deployment │
│ │
│ LOCAL ONLY (untracked): │
│ - data/ → instance-specific storage │
│ - logs/ → runtime logs │
│ - .env → secrets │
└─────────────────────────────────────────────────────────────┘
```
**Why this works:**
- Code and site are version controlled (GitHub)
- Raw data stays local (instance-specific)
- Site is generated from data, so reproducible
- Automatic rollback via git history
</pattern>
<pattern name="multi-instance">
## Multi-Instance Branching
Each agent instance gets its own branch while sharing core code.
```
main # Shared features, bug fixes
├── instance/feedback-bot # Every Reader feedback bot
├── instance/support-bot # Customer support bot
└── instance/research-bot # Research assistant
```
**Change flow:**
| Change Type | Work On | Then |
|-------------|---------|------|
| Core features | main | Merge to instance branches |
| Bug fixes | main | Merge to instance branches |
| Instance config | instance branch | Done |
| Instance data | instance branch | Done |
**Sync tools:**
```typescript
tool("self_deploy", "Pull latest from main, rebuild, restart", ...)
tool("sync_from_instance", "Merge from another instance", ...)
tool("propose_to_main", "Create PR to share improvements", ...)
```
</pattern>
<pattern name="site-as-output">
## Site as Agent Output
The agent generates and maintains a website as a natural output, not through specialized site tools.
```
Discord Message
Agent processes it, extracts insights
Agent decides what site updates are needed
Agent writes files using write_file primitive
Git commit + push triggers deployment
Site updates automatically
```
**Key insight:** Don't build site generation tools. Give the agent file tools and teach it in the prompt how to create good sites.
```markdown
## Site Management
You maintain a public feedback site. When feedback comes in:
1. Use write_file to update site/public/content/feedback.json
2. If the site's React components need improvement, modify them
3. Commit changes and push to trigger Vercel deploy
The site should be:
- Clean, modern dashboard aesthetic
- Clear visual hierarchy
- Status organization (Inbox, Active, Done)
You decide the structure. Make it good.
```
</pattern>
<pattern name="approval-gates">
## Approval Gates Pattern
Separate "propose" from "apply" for dangerous operations.
```typescript
// Pending changes stored separately
const pendingChanges = new Map<string, string>();
tool("write_file", async ({ path, content }) => {
if (requiresApproval(path)) {
// Store for approval
pendingChanges.set(path, content);
const diff = generateDiff(path, content);
return {
text: `Change requires approval.\n\n${diff}\n\nReply "yes" to apply.`
};
} else {
// Apply immediately
writeFileSync(path, content);
return { text: `Wrote ${path}` };
}
});
tool("apply_pending", async () => {
for (const [path, content] of pendingChanges) {
writeFileSync(path, content);
}
pendingChanges.clear();
return { text: "Applied all pending changes" };
});
```
**What requires approval:**
- src/*.ts (agent code)
- package.json (dependencies)
- system prompt changes
**What doesn't:**
- data/* (instance data)
- site/* (generated content)
- docs/* (documentation)
</pattern>
<design_questions>
## Questions to Ask When Designing
1. **What events trigger agent turns?** (messages, webhooks, timers, user requests)
2. **What primitives does the agent need?** (read, write, call API, restart)
3. **What decisions should the agent make?** (format, structure, priority, action)
4. **What decisions should be hardcoded?** (security boundaries, approval requirements)
5. **How does the agent verify its work?** (health checks, build verification)
6. **How does the agent recover from mistakes?** (git rollback, approval gates)
</design_questions>