Files
claude-engineering-plugin/plugins/compound-engineering/skills/agent-native-architecture/references/mcp-tool-design.md
Dan Shipper 1bc6bd9164 [2.18.0] Add Dynamic Capability Discovery and iCloud sync patterns (#62)
* [2.17.0] Expand agent-native skill with mobile app learnings

Major expansion of agent-native-architecture skill based on real-world
learnings from building the Every Reader iOS app.

New reference documents:
- dynamic-context-injection.md: Runtime app state in system prompts
- action-parity-discipline.md: Ensuring agents can do what users can
- shared-workspace-architecture.md: Agents and users in same data space
- agent-native-testing.md: Testing patterns for agent-native apps
- mobile-patterns.md: Background execution, permissions, cost awareness

Updated references:
- architecture-patterns.md: Added Unified Agent Architecture, Agent-to-UI
  Communication, and Model Tier Selection patterns

Enhanced agent-native-reviewer with comprehensive review process covering
all new patterns, including mobile-specific verification.

Key insight: "The agent should be able to do anything the user can do,
through tools that mirror UI capabilities, with full context about the
app state."

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* [2.18.0] Add Dynamic Capability Discovery and iCloud sync patterns

New patterns in agent-native-architecture skill:

- **Dynamic Capability Discovery** - For agent-native apps integrating with
  external APIs (HealthKit, HomeKit, GraphQL), use a discovery tool (list_*)
  plus a generic access tool instead of individual tools per endpoint.
  (Note: Static mapping is fine for constrained agents with limited scope.)

- **CRUD Completeness** - Every entity needs create, read, update, AND delete.

- **iCloud File Storage** - Use iCloud Documents for shared workspace to get
  free, automatic multi-device sync without building a sync layer.

- **Architecture Review Checklist** - Pushes reviewer findings earlier into
  design phase. Covers tool design, action parity, UI integration, context.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-12-25 12:03:07 -06:00

507 lines
15 KiB
Markdown

<overview>
How to design MCP tools following prompt-native principles. Tools should be primitives that enable capability, not workflows that encode decisions.
**Core principle:** Whatever a user can do, the agent should be able to do. Don't artificially limit the agent—give it the same primitives a power user would have.
</overview>
<principle name="primitives-not-workflows">
## Tools Are Primitives, Not Workflows
**Wrong approach:** Tools that encode business logic
```typescript
tool("process_feedback", {
feedback: z.string(),
category: z.enum(["bug", "feature", "question"]),
priority: z.enum(["low", "medium", "high"]),
}, async ({ feedback, category, priority }) => {
// Tool decides how to process
const processed = categorize(feedback);
const stored = await saveToDatabase(processed);
const notification = await notify(priority);
return { processed, stored, notification };
});
```
**Right approach:** Primitives that enable any workflow
```typescript
tool("store_item", {
key: z.string(),
value: z.any(),
}, async ({ key, value }) => {
await db.set(key, value);
return { text: `Stored ${key}` };
});
tool("send_message", {
channel: z.string(),
content: z.string(),
}, async ({ channel, content }) => {
await messenger.send(channel, content);
return { text: "Sent" };
});
```
The agent decides categorization, priority, and when to notify based on the system prompt.
</principle>
<principle name="descriptive-names">
## Tools Should Have Descriptive, Primitive Names
Names should describe the capability, not the use case:
| Wrong | Right |
|-------|-------|
| `process_user_feedback` | `store_item` |
| `create_feedback_summary` | `write_file` |
| `send_notification` | `send_message` |
| `deploy_to_production` | `git_push` |
The prompt tells the agent *when* to use primitives. The tool just provides *capability*.
</principle>
<principle name="simple-inputs">
## Inputs Should Be Simple
Tools accept data. They don't accept decisions.
**Wrong:** Tool accepts decisions
```typescript
tool("format_content", {
content: z.string(),
format: z.enum(["markdown", "html", "json"]),
style: z.enum(["formal", "casual", "technical"]),
}, ...)
```
**Right:** Tool accepts data, agent decides format
```typescript
tool("write_file", {
path: z.string(),
content: z.string(),
}, ...)
// Agent decides to write index.html with HTML content, or data.json with JSON
```
</principle>
<principle name="rich-outputs">
## Outputs Should Be Rich
Return enough information for the agent to verify and iterate.
**Wrong:** Minimal output
```typescript
async ({ key }) => {
await db.delete(key);
return { text: "Deleted" };
}
```
**Right:** Rich output
```typescript
async ({ key }) => {
const existed = await db.has(key);
if (!existed) {
return { text: `Key ${key} did not exist` };
}
await db.delete(key);
return { text: `Deleted ${key}. ${await db.count()} items remaining.` };
}
```
</principle>
<design_template>
## Tool Design Template
```typescript
import { createSdkMcpServer, tool } from "@anthropic-ai/claude-agent-sdk";
import { z } from "zod";
export const serverName = createSdkMcpServer({
name: "server-name",
version: "1.0.0",
tools: [
// READ operations
tool(
"read_item",
"Read an item by key",
{ key: z.string().describe("Item key") },
async ({ key }) => {
const item = await storage.get(key);
return {
content: [{
type: "text",
text: item ? JSON.stringify(item, null, 2) : `Not found: ${key}`,
}],
isError: !item,
};
}
),
tool(
"list_items",
"List all items, optionally filtered",
{
prefix: z.string().optional().describe("Filter by key prefix"),
limit: z.number().default(100).describe("Max items"),
},
async ({ prefix, limit }) => {
const items = await storage.list({ prefix, limit });
return {
content: [{
type: "text",
text: `Found ${items.length} items:\n${items.map(i => i.key).join("\n")}`,
}],
};
}
),
// WRITE operations
tool(
"store_item",
"Store an item",
{
key: z.string().describe("Item key"),
value: z.any().describe("Item data"),
},
async ({ key, value }) => {
await storage.set(key, value);
return {
content: [{ type: "text", text: `Stored ${key}` }],
};
}
),
tool(
"delete_item",
"Delete an item",
{ key: z.string().describe("Item key") },
async ({ key }) => {
const existed = await storage.delete(key);
return {
content: [{
type: "text",
text: existed ? `Deleted ${key}` : `${key} did not exist`,
}],
};
}
),
// EXTERNAL operations
tool(
"call_api",
"Make an HTTP request",
{
url: z.string().url(),
method: z.enum(["GET", "POST", "PUT", "DELETE"]).default("GET"),
body: z.any().optional(),
},
async ({ url, method, body }) => {
const response = await fetch(url, { method, body: JSON.stringify(body) });
const text = await response.text();
return {
content: [{
type: "text",
text: `${response.status} ${response.statusText}\n\n${text}`,
}],
isError: !response.ok,
};
}
),
],
});
```
</design_template>
<example name="feedback-server">
## Example: Feedback Storage Server
This server provides primitives for storing feedback. It does NOT decide how to categorize or organize feedback—that's the agent's job via the prompt.
```typescript
export const feedbackMcpServer = createSdkMcpServer({
name: "feedback",
version: "1.0.0",
tools: [
tool(
"store_feedback",
"Store a feedback item",
{
item: z.object({
id: z.string(),
author: z.string(),
content: z.string(),
importance: z.number().min(1).max(5),
timestamp: z.string(),
status: z.string().optional(),
urls: z.array(z.string()).optional(),
metadata: z.any().optional(),
}).describe("Feedback item"),
},
async ({ item }) => {
await db.feedback.insert(item);
return {
content: [{
type: "text",
text: `Stored feedback ${item.id} from ${item.author}`,
}],
};
}
),
tool(
"list_feedback",
"List feedback items",
{
limit: z.number().default(50),
status: z.string().optional(),
},
async ({ limit, status }) => {
const items = await db.feedback.list({ limit, status });
return {
content: [{
type: "text",
text: JSON.stringify(items, null, 2),
}],
};
}
),
tool(
"update_feedback",
"Update a feedback item",
{
id: z.string(),
updates: z.object({
status: z.string().optional(),
importance: z.number().optional(),
metadata: z.any().optional(),
}),
},
async ({ id, updates }) => {
await db.feedback.update(id, updates);
return {
content: [{ type: "text", text: `Updated ${id}` }],
};
}
),
],
});
```
The system prompt then tells the agent *how* to use these primitives:
```markdown
## Feedback Processing
When someone shares feedback:
1. Extract author, content, and any URLs
2. Rate importance 1-5 based on actionability
3. Store using feedback.store_feedback
4. If high importance (4-5), notify the channel
Use your judgment about importance ratings.
```
</example>
<principle name="dynamic-capability-discovery">
## Dynamic Capability Discovery vs Static Tool Mapping
**This pattern is specifically for agent-native apps** where you want the agent to have full access to an external API—the same access a user would have. It follows the core agent-native principle: "Whatever the user can do, the agent can do."
If you're building a constrained agent with limited capabilities, static tool mapping may be intentional. But for agent-native apps integrating with HealthKit, HomeKit, GraphQL, or similar APIs:
**Static Tool Mapping (Anti-pattern for Agent-Native):**
Build individual tools for each API capability. Always out of date, limits agent to only what you anticipated.
```typescript
// ❌ Static: Every API type needs a hardcoded tool
tool("read_steps", async ({ startDate, endDate }) => {
return healthKit.query(HKQuantityType.stepCount, startDate, endDate);
});
tool("read_heart_rate", async ({ startDate, endDate }) => {
return healthKit.query(HKQuantityType.heartRate, startDate, endDate);
});
tool("read_sleep", async ({ startDate, endDate }) => {
return healthKit.query(HKCategoryType.sleepAnalysis, startDate, endDate);
});
// When HealthKit adds glucose tracking... you need a code change
```
**Dynamic Capability Discovery (Preferred):**
Build a meta-tool that discovers what's available, and a generic tool that can access anything.
```typescript
// ✅ Dynamic: Agent discovers and uses any capability
// Discovery tool - returns what's available at runtime
tool("list_available_capabilities", async () => {
const quantityTypes = await healthKit.availableQuantityTypes();
const categoryTypes = await healthKit.availableCategoryTypes();
return {
text: `Available health metrics:\n` +
`Quantity types: ${quantityTypes.join(", ")}\n` +
`Category types: ${categoryTypes.join(", ")}\n` +
`\nUse read_health_data with any of these types.`
};
});
// Generic access tool - type is a string, API validates
tool("read_health_data", {
dataType: z.string(), // NOT z.enum - let HealthKit validate
startDate: z.string(),
endDate: z.string(),
aggregation: z.enum(["sum", "average", "samples"]).optional()
}, async ({ dataType, startDate, endDate, aggregation }) => {
// HealthKit validates the type, returns helpful error if invalid
const result = await healthKit.query(dataType, startDate, endDate, aggregation);
return { text: JSON.stringify(result, null, 2) };
});
```
**When to Use Each Approach:**
| Dynamic (Agent-Native) | Static (Constrained Agent) |
|------------------------|---------------------------|
| Agent should access anything user can | Agent has intentionally limited scope |
| External API with many endpoints (HealthKit, HomeKit, GraphQL) | Internal domain with fixed operations |
| API evolves independently of your code | Tightly coupled domain logic |
| You want full action parity | You want strict guardrails |
**The agent-native default is Dynamic.** Only use Static when you're intentionally limiting the agent's capabilities.
**Complete Dynamic Pattern:**
```swift
// 1. Discovery tool: What can I access?
tool("list_health_types", "Get available health data types") { _ in
let store = HKHealthStore()
let quantityTypes = HKQuantityTypeIdentifier.allCases.map { $0.rawValue }
let categoryTypes = HKCategoryTypeIdentifier.allCases.map { $0.rawValue }
let characteristicTypes = HKCharacteristicTypeIdentifier.allCases.map { $0.rawValue }
return ToolResult(text: """
Available HealthKit types:
## Quantity Types (numeric values)
\(quantityTypes.joined(separator: ", "))
## Category Types (categorical data)
\(categoryTypes.joined(separator: ", "))
## Characteristic Types (user info)
\(characteristicTypes.joined(separator: ", "))
Use read_health_data or write_health_data with any of these.
""")
}
// 2. Generic read: Access any type by name
tool("read_health_data", "Read any health metric", {
dataType: z.string().describe("Type name from list_health_types"),
startDate: z.string(),
endDate: z.string()
}) { request in
// Let HealthKit validate the type name
guard let type = HKQuantityTypeIdentifier(rawValue: request.dataType)
?? HKCategoryTypeIdentifier(rawValue: request.dataType) else {
return ToolResult(
text: "Unknown type: \(request.dataType). Use list_health_types to see available types.",
isError: true
)
}
let samples = try await healthStore.querySamples(type: type, start: startDate, end: endDate)
return ToolResult(text: samples.formatted())
}
// 3. Context injection: Tell agent what's available in system prompt
func buildSystemPrompt() -> String {
let availableTypes = healthService.getAuthorizedTypes()
return """
## Available Health Data
You have access to these health metrics:
\(availableTypes.map { "- \($0)" }.joined(separator: "\n"))
Use read_health_data with any type above. For new types not listed,
use list_health_types to discover what's available.
"""
}
```
**Benefits:**
- Agent can use any API capability, including ones added after your code shipped
- API is the validator, not your enum definition
- Smaller tool surface (2-3 tools vs N tools)
- Agent naturally discovers capabilities by asking
- Works with any API that has introspection (HealthKit, GraphQL, OpenAPI)
</principle>
<principle name="crud-completeness">
## CRUD Completeness
Every data type the agent can create, it should be able to read, update, and delete. Incomplete CRUD = broken action parity.
**Anti-pattern: Create-only tools**
```typescript
// ❌ Can create but not modify or delete
tool("create_experiment", { hypothesis, variable, metric })
tool("write_journal_entry", { content, author, tags })
// User: "Delete that experiment" → Agent: "I can't do that"
```
**Correct: Full CRUD for each entity**
```typescript
// ✅ Complete CRUD
tool("create_experiment", { hypothesis, variable, metric })
tool("read_experiment", { id })
tool("update_experiment", { id, updates: { hypothesis?, status?, endDate? } })
tool("delete_experiment", { id })
tool("create_journal_entry", { content, author, tags })
tool("read_journal", { query?, dateRange?, author? })
tool("update_journal_entry", { id, content, tags? })
tool("delete_journal_entry", { id })
```
**The CRUD Audit:**
For each entity type in your app, verify:
- [ ] Create: Agent can create new instances
- [ ] Read: Agent can query/search/list instances
- [ ] Update: Agent can modify existing instances
- [ ] Delete: Agent can remove instances
If any operation is missing, users will eventually ask for it and the agent will fail.
</principle>
<checklist>
## MCP Tool Design Checklist
**Fundamentals:**
- [ ] Tool names describe capability, not use case
- [ ] Inputs are data, not decisions
- [ ] Outputs are rich (enough for agent to verify)
- [ ] CRUD operations are separate tools (not one mega-tool)
- [ ] No business logic in tool implementations
- [ ] Error states clearly communicated via `isError`
- [ ] Descriptions explain what the tool does, not when to use it
**Dynamic Capability Discovery (for agent-native apps):**
- [ ] For external APIs where agent should have full access, use dynamic discovery
- [ ] Include a `list_*` or `discover_*` tool for each API surface
- [ ] Use string inputs (not enums) when the API validates
- [ ] Inject available capabilities into system prompt at runtime
- [ ] Only use static tool mapping if intentionally limiting agent scope
**CRUD Completeness:**
- [ ] Every entity has create, read, update, delete operations
- [ ] Every UI action has a corresponding agent tool
- [ ] Test: "Can the agent undo what it just did?"
</checklist>