2 Commits

Author SHA1 Message Date
John Lamb
e4ac24f989 feat(grid): Replace real-time CTF with turn-based grid system
Replace continuous free-form movement with discrete 20x50 grid-based
gameplay featuring asymmetric movement mechanics:

- Blue/Red teams with 3 units each
- Zone-based movement: orthogonal (4 dir) in offense, diagonal (8 dir) in defense
- Alternating turns with click-to-select, click-to-move input
- Fog of war: 3-cell Chebyshev vision radius per unit
- Defense speed nerf: skip every 4th move in own zone
- AI opponent that chases flag carriers and advances toward enemy flag
- Collision resolution: defender wins in their zone, lower ID wins in neutral

Implements all 3 phases from the plan:
- Phase 1: Playable grid with hot-seat two-player
- Phase 2: Fog of war + defense speed nerf
- Phase 3: AI opponent

Deleted obsolete files: Flag.cs, Unit.cs, RouteDrawer.cs, SimpleAI.cs, Visibility.cs

Co-Authored-By: Claude <noreply@anthropic.com>
2026-02-07 17:05:44 -06:00
0de174eb1a feat/teaser-prototype-playable-core (#1)
Co-authored-by: John Lamb <j.lamb13@gmail.com>
Reviewed-on: #1
2026-02-05 02:30:45 +00:00
16 changed files with 2346 additions and 14 deletions

View File

@@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: d761750f862c443dc8458191d85f0d4d
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View File

@@ -0,0 +1,168 @@
using UnityEngine;
using UnityEngine.InputSystem;
public class CameraController : MonoBehaviour
{
// Zoom settings
public float minZoom = 5f;
public float maxZoom = 35f;
public float zoomSpeed = 2f;
public float pinchZoomSpeed = 0.1f;
// Pan settings
public float panSpeed = 1f;
// Map bounds (grid-based)
float mapWidth = ZoneBoundaries.BoardWidth;
float mapHeight = ZoneBoundaries.BoardHeight;
Camera cam;
Vector2 lastPanPosition;
bool isPanning;
float lastPinchDistance;
bool isPinching;
void Start()
{
cam = Camera.main;
}
void Update()
{
HandleMouseInput();
HandleTouchInput();
ClampCameraPosition();
}
void HandleMouseInput()
{
var mouse = Mouse.current;
if (mouse == null) return;
// Scroll wheel zoom
float scroll = mouse.scroll.ReadValue().y;
if (Mathf.Abs(scroll) > 0.01f)
{
Zoom(-scroll * zoomSpeed * Time.deltaTime * 10f);
}
// Right-click pan (left-click is for unit selection)
if (mouse.rightButton.wasPressedThisFrame)
{
lastPanPosition = mouse.position.ReadValue();
isPanning = true;
}
else if (mouse.rightButton.wasReleasedThisFrame)
{
isPanning = false;
}
if (isPanning && mouse.rightButton.isPressed)
{
Vector2 currentPos = mouse.position.ReadValue();
Vector2 delta = currentPos - lastPanPosition;
Pan(-delta);
lastPanPosition = currentPos;
}
}
void HandleTouchInput()
{
var touch = Touchscreen.current;
if (touch == null) return;
int touchCount = 0;
foreach (var t in touch.touches)
{
if (t.press.isPressed) touchCount++;
}
if (touchCount == 2)
{
// Two finger pinch zoom and pan
var touch0 = touch.touches[0];
var touch1 = touch.touches[1];
Vector2 pos0 = touch0.position.ReadValue();
Vector2 pos1 = touch1.position.ReadValue();
float currentDistance = Vector2.Distance(pos0, pos1);
if (!isPinching)
{
isPinching = true;
lastPinchDistance = currentDistance;
lastPanPosition = (pos0 + pos1) / 2f;
}
else
{
// Pinch zoom
float deltaDistance = lastPinchDistance - currentDistance;
Zoom(deltaDistance * pinchZoomSpeed);
lastPinchDistance = currentDistance;
// Two-finger pan
Vector2 currentCenter = (pos0 + pos1) / 2f;
Vector2 delta = currentCenter - lastPanPosition;
Pan(-delta);
lastPanPosition = currentCenter;
}
isPanning = false; // Don't single-finger pan while pinching
}
else if (touchCount == 1)
{
isPinching = false;
var primaryTouch = touch.primaryTouch;
Vector2 touchPos = primaryTouch.position.ReadValue();
// Two-finger gestures only for pan on touch - single finger is for unit selection
// Don't initiate pan on single touch
}
else
{
isPinching = false;
isPanning = false;
}
}
void Zoom(float delta)
{
float newSize = cam.orthographicSize + delta;
cam.orthographicSize = Mathf.Clamp(newSize, minZoom, maxZoom);
}
void Pan(Vector2 screenDelta)
{
// Convert screen delta to world delta
float worldUnitsPerPixel = cam.orthographicSize * 2f / Screen.height;
Vector3 worldDelta = new Vector3(
screenDelta.x * worldUnitsPerPixel * panSpeed,
screenDelta.y * worldUnitsPerPixel * panSpeed,
0
);
cam.transform.position += worldDelta;
}
void ClampCameraPosition()
{
// Keep camera within map bounds (with some padding for zoom)
float halfHeight = cam.orthographicSize;
float halfWidth = halfHeight * cam.aspect;
float minX = -mapWidth / 2f + halfWidth;
float maxX = mapWidth / 2f - halfWidth;
float minY = -mapHeight / 2f + halfHeight;
float maxY = mapHeight / 2f - halfHeight;
// Handle case where zoom is wider than map
if (minX > maxX) minX = maxX = 0;
if (minY > maxY) minY = maxY = 0;
Vector3 pos = cam.transform.position;
pos.x = Mathf.Clamp(pos.x, minX, maxX);
pos.y = Mathf.Clamp(pos.y, minY, maxY);
cam.transform.position = pos;
}
}

View File

@@ -0,0 +1,2 @@
fileFormatVersion: 2
guid: a481d18ae14b94a098fb1659b13c68a5

View File

@@ -0,0 +1,147 @@
using UnityEngine;
using TMPro;
public class Game : MonoBehaviour
{
// Auto-bootstrap when game starts - no Editor setup needed
[RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.AfterSceneLoad)]
static void Bootstrap()
{
if (Instance != null) return;
var gameGO = new GameObject("Game");
gameGO.AddComponent<Game>();
}
// ===========================================
// CONFIGURATION
// ===========================================
// Camera settings for grid view
public const float CameraZoom = 28f; // Fits 20x50 grid
public const float CameraMinZoom = 15f;
public const float CameraMaxZoom = 35f;
// References
public static Game Instance { get; private set; }
GridBoard gridBoard;
TextMeshProUGUI scoreText;
TextMeshProUGUI gameOverText;
TextMeshProUGUI turnText;
void Awake()
{
Instance = this;
}
void Start()
{
SetupCamera();
CreateUI();
CreateGridBoard();
}
void SetupCamera()
{
var cam = Camera.main;
if (cam != null)
{
cam.orthographic = true;
cam.orthographicSize = CameraZoom;
cam.transform.position = new Vector3(0, 0, -10);
cam.backgroundColor = new Color(0.1f, 0.1f, 0.15f);
// Add camera controller for zoom/pan
var controller = cam.gameObject.AddComponent<CameraController>();
controller.minZoom = CameraMinZoom;
controller.maxZoom = CameraMaxZoom;
}
}
void CreateUI()
{
// Create Canvas
var canvasGO = new GameObject("Canvas");
var canvas = canvasGO.AddComponent<Canvas>();
canvas.renderMode = RenderMode.ScreenSpaceOverlay;
canvasGO.AddComponent<UnityEngine.UI.CanvasScaler>();
canvasGO.AddComponent<UnityEngine.UI.GraphicRaycaster>();
// Score text (top center)
var scoreGO = new GameObject("ScoreText");
scoreGO.transform.SetParent(canvasGO.transform, false);
scoreText = scoreGO.AddComponent<TextMeshProUGUI>();
scoreText.text = "0 - 0";
scoreText.fontSize = 48;
scoreText.alignment = TextAlignmentOptions.Center;
scoreText.color = Color.white;
var scoreRect = scoreGO.GetComponent<RectTransform>();
scoreRect.anchorMin = new Vector2(0.5f, 1f);
scoreRect.anchorMax = new Vector2(0.5f, 1f);
scoreRect.pivot = new Vector2(0.5f, 1f);
scoreRect.anchoredPosition = new Vector2(0, -20);
scoreRect.sizeDelta = new Vector2(200, 60);
// Turn indicator (below score)
var turnGO = new GameObject("TurnText");
turnGO.transform.SetParent(canvasGO.transform, false);
turnText = turnGO.AddComponent<TextMeshProUGUI>();
turnText.text = "BLUE'S TURN";
turnText.fontSize = 32;
turnText.alignment = TextAlignmentOptions.Center;
turnText.color = Color.blue;
var turnRect = turnGO.GetComponent<RectTransform>();
turnRect.anchorMin = new Vector2(0.5f, 1f);
turnRect.anchorMax = new Vector2(0.5f, 1f);
turnRect.pivot = new Vector2(0.5f, 1f);
turnRect.anchoredPosition = new Vector2(0, -80);
turnRect.sizeDelta = new Vector2(300, 50);
// Instructions (bottom)
var instructionsGO = new GameObject("InstructionsText");
instructionsGO.transform.SetParent(canvasGO.transform, false);
var instructionsText = instructionsGO.AddComponent<TextMeshProUGUI>();
instructionsText.text = "Click unit to select, then click destination to move";
instructionsText.fontSize = 20;
instructionsText.alignment = TextAlignmentOptions.Center;
instructionsText.color = new Color(0.7f, 0.7f, 0.7f);
var instrRect = instructionsGO.GetComponent<RectTransform>();
instrRect.anchorMin = new Vector2(0.5f, 0f);
instrRect.anchorMax = new Vector2(0.5f, 0f);
instrRect.pivot = new Vector2(0.5f, 0f);
instrRect.anchoredPosition = new Vector2(0, 20);
instrRect.sizeDelta = new Vector2(500, 40);
// Game over text (hidden initially)
var gameOverGO = new GameObject("GameOverText");
gameOverGO.transform.SetParent(canvasGO.transform, false);
gameOverText = gameOverGO.AddComponent<TextMeshProUGUI>();
gameOverText.text = "";
gameOverText.fontSize = 72;
gameOverText.alignment = TextAlignmentOptions.Center;
gameOverText.color = Color.white;
gameOverText.gameObject.SetActive(false);
var gameOverRect = gameOverGO.GetComponent<RectTransform>();
gameOverRect.anchorMin = new Vector2(0.5f, 0.5f);
gameOverRect.anchorMax = new Vector2(0.5f, 0.5f);
gameOverRect.pivot = new Vector2(0.5f, 0.5f);
gameOverRect.anchoredPosition = Vector2.zero;
gameOverRect.sizeDelta = new Vector2(400, 100);
}
void CreateGridBoard()
{
var boardGO = new GameObject("GridBoard");
gridBoard = boardGO.AddComponent<GridBoard>();
// Pass UI references
gridBoard.scoreText = scoreText;
gridBoard.gameOverText = gameOverText;
gridBoard.turnText = turnText;
}
}

View File

@@ -0,0 +1,2 @@
fileFormatVersion: 2
guid: f62c6569cd5544a03b7d7d1cee7da3f6

View File

@@ -0,0 +1,143 @@
using System.Collections.Generic;
using System.Linq;
using UnityEngine;
public class GridAI : MonoBehaviour
{
GridBoard board;
Team aiTeam;
float thinkDelay = 0.5f;
float thinkTimer = 0f;
bool hasMoved = false;
public void Initialize(GridBoard board, Team team)
{
this.board = board;
this.aiTeam = team;
}
void Update()
{
if (board == null || board.IsGameOver()) return;
if (board.GetCurrentTeam() != aiTeam)
{
hasMoved = false;
thinkTimer = 0f;
return;
}
if (hasMoved) return;
// Small delay to make AI moves visible
thinkTimer += Time.deltaTime;
if (thinkTimer < thinkDelay) return;
MakeMove();
hasMoved = true;
}
void MakeMove()
{
var units = board.GetUnits(aiTeam);
var visibleCells = board.GetVisibleCells(aiTeam);
// Find a unit that can move
GridUnit bestUnit = null;
Vector2Int bestMove = default;
float bestScore = float.MinValue;
foreach (var unit in units)
{
if (unit.IsTaggedOut) continue;
// Check speed nerf
if (board.IsDefending(unit) && unit.ConsecutiveDefenseMoves % 4 == 3)
{
continue; // This unit must skip
}
var validMoves = board.GetValidMoves(unit);
if (validMoves.Count == 0) continue;
foreach (var move in validMoves)
{
float score = EvaluateMove(unit, move, visibleCells);
if (score > bestScore)
{
bestScore = score;
bestUnit = unit;
bestMove = move;
}
}
}
if (bestUnit != null)
{
board.ExecuteAIMove(bestUnit, bestMove);
}
else
{
// No valid moves, skip turn
board.AISkipTurn();
}
}
float EvaluateMove(GridUnit unit, Vector2Int move, HashSet<Vector2Int> visibleCells)
{
float score = 0f;
var enemyFlagPos = board.GetEnemyFlagPosition(aiTeam);
var ourFlagCarrier = board.GetFlagCarrier(aiTeam == Team.Blue ? Team.Red : Team.Blue);
var theirFlagCarrier = board.GetFlagCarrier(aiTeam);
// Are we carrying the enemy flag?
bool carryingFlag = theirFlagCarrier == unit;
if (carryingFlag)
{
// Priority: Return to base with flag
// Move toward our defense zone
int targetY = aiTeam == Team.Blue ? 0 : ZoneBoundaries.BoardHeight - 1;
float distToBase = Mathf.Abs(move.y - targetY);
score += 1000f - distToBase * 10f;
}
else if (ourFlagCarrier != null && visibleCells.Contains(ourFlagCarrier.GridPosition))
{
// Our flag is being carried - chase the carrier!
float distToCarrier = ChebyshevDistance(move, ourFlagCarrier.GridPosition);
score += 500f - distToCarrier * 15f;
}
else
{
// Go for the enemy flag
float distToFlag = ChebyshevDistance(move, enemyFlagPos);
score += 100f - distToFlag * 5f;
}
// Small bonus for advancing toward enemy
if (aiTeam == Team.Blue)
{
score += move.y * 0.5f; // Blue advances up
}
else
{
score += (ZoneBoundaries.BoardHeight - move.y) * 0.5f; // Red advances down
}
// Avoid staying in defense too long (speed penalty)
if (board.GetZoneOwner(move.y) == (aiTeam == Team.Blue ? ZoneOwner.Blue : ZoneOwner.Red))
{
score -= 5f;
}
// Small randomness to prevent predictability
score += Random.Range(0f, 2f);
return score;
}
int ChebyshevDistance(Vector2Int a, Vector2Int b)
{
return Mathf.Max(Mathf.Abs(a.x - b.x), Mathf.Abs(a.y - b.y));
}
}

View File

@@ -0,0 +1,905 @@
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.InputSystem;
public enum ZoneOwner { Blue, Neutral, Red }
public static class ZoneBoundaries
{
public const int TeamBlueDefenseEnd = 20; // Y < 20 is Blue defense
public const int NeutralEnd = 30; // Y < 30 is neutral (if >= TeamBlueDefenseEnd)
public const int BoardWidth = 20;
public const int BoardHeight = 50;
}
public class GridBoard : MonoBehaviour
{
// Configuration
const float CellSize = 1f;
const float CellPadding = 0.05f;
const int UnitsPerTeam = 3;
const int WinScore = 3;
const int RespawnDelay = 2; // Turns until respawn
const int VisionRadius = 3; // Chebyshev distance for fog of war
// Colors
static readonly Color BlueZoneColor = new Color(0.2f, 0.3f, 0.6f, 0.4f);
static readonly Color NeutralZoneColor = new Color(0.4f, 0.4f, 0.4f, 0.4f);
static readonly Color RedZoneColor = new Color(0.6f, 0.2f, 0.2f, 0.4f);
static readonly Color BlueUnitColor = new Color(0.3f, 0.5f, 1f);
static readonly Color RedUnitColor = new Color(1f, 0.3f, 0.3f);
static readonly Color ValidMoveColor = new Color(0.3f, 1f, 0.3f, 0.5f);
static readonly Color SelectedColor = new Color(1f, 1f, 0.3f, 0.8f);
static readonly Color FlagBlueColor = new Color(0.3f, 0.5f, 1f);
static readonly Color FlagRedColor = new Color(1f, 0.3f, 0.3f);
// Board state
GridUnit[,] cellOccupants;
Dictionary<GridUnit, Vector2Int> unitPositions = new();
List<GridUnit> blueUnits = new();
List<GridUnit> redUnits = new();
// Flags
Vector2Int blueFlagPosition;
Vector2Int redFlagPosition;
Vector2Int blueFlagHome;
Vector2Int redFlagHome;
GridUnit blueFlagCarrier;
GridUnit redFlagCarrier;
GameObject blueFlagGO;
GameObject redFlagGO;
// Turn state
Team currentTeam = Team.Blue;
int turnNumber = 0;
// Scores
int blueScore = 0;
int redScore = 0;
bool gameOver = false;
// UI state
GridUnit selectedUnit;
List<Vector2Int> validMoves = new();
List<GameObject> validMoveHighlights = new();
GameObject selectionHighlight;
// Visual objects
GameObject[,] cellVisuals;
// Visibility
HashSet<Vector2Int> visibleToBlue = new();
HashSet<Vector2Int> visibleToRed = new();
// AI
GridAI ai;
// UI references (set by Game.cs)
public TMPro.TextMeshProUGUI scoreText;
public TMPro.TextMeshProUGUI gameOverText;
public TMPro.TextMeshProUGUI turnText;
int nextUnitId = 0;
void Start()
{
InitializeBoard();
CreateBoardVisuals();
SpawnUnits();
CreateFlags();
RecalculateVisibility();
UpdateUI();
// Initialize AI for red team
ai = gameObject.AddComponent<GridAI>();
ai.Initialize(this, Team.Red);
}
void InitializeBoard()
{
cellOccupants = new GridUnit[ZoneBoundaries.BoardWidth, ZoneBoundaries.BoardHeight];
cellVisuals = new GameObject[ZoneBoundaries.BoardWidth, ZoneBoundaries.BoardHeight];
}
void CreateBoardVisuals()
{
// Create parent for organization
var boardParent = new GameObject("Board");
boardParent.transform.SetParent(transform);
for (int x = 0; x < ZoneBoundaries.BoardWidth; x++)
{
for (int y = 0; y < ZoneBoundaries.BoardHeight; y++)
{
Color zoneColor = GetZoneColor(y);
var cell = CreateSprite($"Cell_{x}_{y}", zoneColor, CellSize - CellPadding, CellSize - CellPadding);
cell.transform.SetParent(boardParent.transform);
cell.transform.position = GridToWorld(new Vector2Int(x, y));
cell.GetComponent<SpriteRenderer>().sortingOrder = -10;
cellVisuals[x, y] = cell;
}
}
}
Color GetZoneColor(int y)
{
var zone = GetZoneOwner(y);
return zone switch
{
ZoneOwner.Blue => BlueZoneColor,
ZoneOwner.Neutral => NeutralZoneColor,
ZoneOwner.Red => RedZoneColor,
_ => NeutralZoneColor
};
}
void SpawnUnits()
{
// Blue units spawn at bottom of blue zone
for (int i = 0; i < UnitsPerTeam; i++)
{
int x = ZoneBoundaries.BoardWidth / 2 - 1 + (i % 3);
int y = 2 + (i / 3);
SpawnUnit(Team.Blue, new Vector2Int(x, y));
}
// Red units spawn at top of red zone
for (int i = 0; i < UnitsPerTeam; i++)
{
int x = ZoneBoundaries.BoardWidth / 2 - 1 + (i % 3);
int y = ZoneBoundaries.BoardHeight - 3 - (i / 3);
SpawnUnit(Team.Red, new Vector2Int(x, y));
}
}
GridUnit SpawnUnit(Team team, Vector2Int position)
{
Color color = team == Team.Blue ? BlueUnitColor : RedUnitColor;
var go = CreateSprite($"{team}Unit_{nextUnitId}", color, CellSize * 0.8f, CellSize * 0.8f);
go.GetComponent<SpriteRenderer>().sortingOrder = 10;
var unit = new GridUnit(nextUnitId++, team, position, go);
unit.SetWorldPosition(GridToWorld(position));
cellOccupants[position.x, position.y] = unit;
unitPositions[unit] = position;
if (team == Team.Blue)
blueUnits.Add(unit);
else
redUnits.Add(unit);
return unit;
}
void CreateFlags()
{
// Blue flag at center bottom of blue zone
blueFlagHome = new Vector2Int(ZoneBoundaries.BoardWidth / 2, 1);
blueFlagPosition = blueFlagHome;
blueFlagGO = CreateSprite("BlueFlag", FlagBlueColor, CellSize * 0.5f, CellSize * 0.8f);
blueFlagGO.GetComponent<SpriteRenderer>().sortingOrder = 5;
blueFlagGO.transform.position = GridToWorld(blueFlagPosition);
// Red flag at center top of red zone
redFlagHome = new Vector2Int(ZoneBoundaries.BoardWidth / 2, ZoneBoundaries.BoardHeight - 2);
redFlagPosition = redFlagHome;
redFlagGO = CreateSprite("RedFlag", FlagRedColor, CellSize * 0.5f, CellSize * 0.8f);
redFlagGO.GetComponent<SpriteRenderer>().sortingOrder = 5;
redFlagGO.transform.position = GridToWorld(redFlagPosition);
}
void Update()
{
if (gameOver) return;
// AI handles red team
if (currentTeam == Team.Red)
{
return; // AI takes control in GridAI.Update()
}
HandleInput();
}
void HandleInput()
{
var mouse = Mouse.current;
if (mouse == null) return;
if (mouse.leftButton.wasPressedThisFrame)
{
Vector2 worldPos = Camera.main.ScreenToWorldPoint(mouse.position.ReadValue());
Vector2Int gridPos = WorldToGrid(worldPos);
if (!IsInBounds(gridPos)) return;
// If we have a unit selected and clicked on a valid move, execute it
if (selectedUnit != null && validMoves.Contains(gridPos))
{
ExecutePlayerMove(selectedUnit, gridPos);
return;
}
// Check if we clicked on a friendly unit to select it
var unitAtCell = cellOccupants[gridPos.x, gridPos.y];
if (unitAtCell != null && unitAtCell.Team == currentTeam && !unitAtCell.IsTaggedOut)
{
// Check if unit can move this turn (defense speed nerf)
if (IsDefending(unitAtCell) && unitAtCell.ConsecutiveDefenseMoves % 4 == 3)
{
// This unit must skip their move
Debug.Log($"Unit {unitAtCell.UnitId} must skip move (defense speed nerf)");
SelectUnit(null);
return;
}
SelectUnit(unitAtCell);
}
else
{
// Clicked on empty cell or enemy - deselect
SelectUnit(null);
}
}
// Right click to deselect
if (mouse.rightButton.wasPressedThisFrame)
{
SelectUnit(null);
}
}
void SelectUnit(GridUnit unit)
{
selectedUnit = unit;
ClearValidMoveHighlights();
if (unit == null)
{
if (selectionHighlight != null)
selectionHighlight.SetActive(false);
validMoves.Clear();
return;
}
// Show selection highlight
if (selectionHighlight == null)
{
selectionHighlight = CreateSprite("SelectionHighlight", SelectedColor, CellSize * 0.95f, CellSize * 0.95f);
selectionHighlight.GetComponent<SpriteRenderer>().sortingOrder = 1;
}
selectionHighlight.SetActive(true);
selectionHighlight.transform.position = GridToWorld(unit.GridPosition);
// Calculate and show valid moves
validMoves = GetValidMoves(unit);
foreach (var move in validMoves)
{
var highlight = CreateSprite("ValidMove", ValidMoveColor, CellSize * 0.9f, CellSize * 0.9f);
highlight.GetComponent<SpriteRenderer>().sortingOrder = 0;
highlight.transform.position = GridToWorld(move);
validMoveHighlights.Add(highlight);
}
}
void ClearValidMoveHighlights()
{
foreach (var highlight in validMoveHighlights)
{
Destroy(highlight);
}
validMoveHighlights.Clear();
}
public List<Vector2Int> GetValidMoves(GridUnit unit)
{
var moves = new List<Vector2Int>();
if (unit.IsTaggedOut) return moves;
var pos = unit.GridPosition;
bool isDefending = IsDefending(unit);
// Determine valid directions based on zone
Vector2Int[] directions;
if (isDefending)
{
// Diagonal movement (8 directions) in own defense zone
directions = new Vector2Int[]
{
new(-1, -1), new(0, -1), new(1, -1),
new(-1, 0), new(1, 0),
new(-1, 1), new(0, 1), new(1, 1)
};
}
else
{
// Orthogonal movement (4 directions) in offense/neutral zones
directions = new Vector2Int[]
{
new(0, -1), new(-1, 0), new(1, 0), new(0, 1)
};
}
foreach (var dir in directions)
{
var newPos = pos + dir;
if (IsInBounds(newPos))
{
// Can move to empty cells or cells with enemies (will trigger collision)
var occupant = cellOccupants[newPos.x, newPos.y];
if (occupant == null || occupant.Team != unit.Team)
{
moves.Add(newPos);
}
}
}
return moves;
}
void ExecutePlayerMove(GridUnit unit, Vector2Int destination)
{
ExecuteMove(unit, destination);
EndTurn();
}
void ExecuteMove(GridUnit unit, Vector2Int destination)
{
var startPos = unit.GridPosition;
bool wasDefending = IsDefending(unit);
// Move unit
MoveUnit(unit, destination);
// Update defense move counter
bool nowDefending = IsDefending(unit);
if (nowDefending)
{
unit.ConsecutiveDefenseMoves++;
}
else
{
unit.ConsecutiveDefenseMoves = 0;
}
// Check collision
CheckCollision(destination);
// Check flag pickup
CheckFlagPickup(unit);
// Check scoring
CheckScoring(unit);
// Update visual
unit.SetWorldPosition(GridToWorld(destination));
UpdateFlagVisuals();
}
public void MoveUnit(GridUnit unit, Vector2Int to)
{
var from = unitPositions[unit];
if (cellOccupants[from.x, from.y] == unit)
{
cellOccupants[from.x, from.y] = null;
}
cellOccupants[to.x, to.y] = unit;
unitPositions[unit] = to;
unit.GridPosition = to;
}
void CheckCollision(Vector2Int cell)
{
// Find all units at this cell
var unitsHere = new List<GridUnit>();
foreach (var unit in blueUnits)
{
if (!unit.IsTaggedOut && unit.GridPosition == cell)
unitsHere.Add(unit);
}
foreach (var unit in redUnits)
{
if (!unit.IsTaggedOut && unit.GridPosition == cell)
unitsHere.Add(unit);
}
if (unitsHere.Count < 2) return;
// Check for enemy collisions
for (int i = 0; i < unitsHere.Count; i++)
{
for (int j = i + 1; j < unitsHere.Count; j++)
{
var a = unitsHere[i];
var b = unitsHere[j];
if (a.Team != b.Team)
{
ResolveCollision(a, b, cell);
}
}
}
}
void ResolveCollision(GridUnit unitA, GridUnit unitB, Vector2Int cell)
{
if (unitA.IsTaggedOut || unitB.IsTaggedOut) return;
var zoneOwner = GetZoneOwner(cell.y);
// Defender in their zone always wins
if (unitA.Team == Team.Blue && zoneOwner == ZoneOwner.Blue)
TagOut(unitB);
else if (unitB.Team == Team.Blue && zoneOwner == ZoneOwner.Blue)
TagOut(unitA);
else if (unitA.Team == Team.Red && zoneOwner == ZoneOwner.Red)
TagOut(unitB);
else if (unitB.Team == Team.Red && zoneOwner == ZoneOwner.Red)
TagOut(unitA);
else
{
// Neutral zone: lower UnitId wins (deterministic)
if (unitA.UnitId < unitB.UnitId)
TagOut(unitB);
else
TagOut(unitA);
}
}
void TagOut(GridUnit unit)
{
if (unit.IsTaggedOut) return;
unit.IsTaggedOut = true;
unit.RespawnTurnsRemaining = RespawnDelay;
unit.ConsecutiveDefenseMoves = 0;
// Drop flag if carrying
if (blueFlagCarrier == unit)
{
blueFlagCarrier = null;
// Flag stays at current position
Debug.Log("Blue flag dropped!");
}
if (redFlagCarrier == unit)
{
redFlagCarrier = null;
Debug.Log("Red flag dropped!");
}
// Remove from cell
var pos = unit.GridPosition;
if (cellOccupants[pos.x, pos.y] == unit)
{
cellOccupants[pos.x, pos.y] = null;
}
// Fade out visual
if (unit.SpriteRenderer != null)
{
var color = unit.SpriteRenderer.color;
color.a = 0.3f;
unit.SpriteRenderer.color = color;
}
Debug.Log($"{unit.Team} unit {unit.UnitId} tagged out!");
}
void CheckFlagPickup(GridUnit unit)
{
if (unit.IsTaggedOut) return;
var pos = unit.GridPosition;
// Blue unit can pick up red flag
if (unit.Team == Team.Blue && pos == redFlagPosition && redFlagCarrier == null)
{
redFlagCarrier = unit;
Debug.Log($"Blue unit picked up red flag!");
}
// Red unit can pick up blue flag
else if (unit.Team == Team.Red && pos == blueFlagPosition && blueFlagCarrier == null)
{
blueFlagCarrier = unit;
Debug.Log($"Red unit picked up blue flag!");
}
// Return own flag if it's dropped and friendly unit touches it
if (unit.Team == Team.Blue && pos == blueFlagPosition && blueFlagCarrier == null && blueFlagPosition != blueFlagHome)
{
blueFlagPosition = blueFlagHome;
Debug.Log("Blue flag returned home!");
}
if (unit.Team == Team.Red && pos == redFlagPosition && redFlagCarrier == null && redFlagPosition != redFlagHome)
{
redFlagPosition = redFlagHome;
Debug.Log("Red flag returned home!");
}
}
void CheckScoring(GridUnit unit)
{
if (unit.IsTaggedOut) return;
var pos = unit.GridPosition;
var zone = GetZoneOwner(pos.y);
// Blue scores by bringing red flag to blue zone
if (unit.Team == Team.Blue && redFlagCarrier == unit && zone == ZoneOwner.Blue)
{
Score(Team.Blue);
}
// Red scores by bringing blue flag to red zone
else if (unit.Team == Team.Red && blueFlagCarrier == unit && zone == ZoneOwner.Red)
{
Score(Team.Red);
}
}
void Score(Team team)
{
if (team == Team.Blue)
{
blueScore++;
Debug.Log($"Blue scores! {blueScore} - {redScore}");
}
else
{
redScore++;
Debug.Log($"Red scores! {blueScore} - {redScore}");
}
UpdateUI();
if (blueScore >= WinScore)
{
EndGame(Team.Blue);
}
else if (redScore >= WinScore)
{
EndGame(Team.Red);
}
else
{
ResetRound();
}
}
void ResetRound()
{
// Return flags
blueFlagPosition = blueFlagHome;
redFlagPosition = redFlagHome;
blueFlagCarrier = null;
redFlagCarrier = null;
// Respawn all units
for (int i = 0; i < blueUnits.Count; i++)
{
var unit = blueUnits[i];
int x = ZoneBoundaries.BoardWidth / 2 - 1 + (i % 3);
int y = 2 + (i / 3);
RespawnUnit(unit, new Vector2Int(x, y));
}
for (int i = 0; i < redUnits.Count; i++)
{
var unit = redUnits[i];
int x = ZoneBoundaries.BoardWidth / 2 - 1 + (i % 3);
int y = ZoneBoundaries.BoardHeight - 3 - (i / 3);
RespawnUnit(unit, new Vector2Int(x, y));
}
UpdateFlagVisuals();
RecalculateVisibility();
}
void RespawnUnit(GridUnit unit, Vector2Int position)
{
unit.IsTaggedOut = false;
unit.RespawnTurnsRemaining = 0;
unit.ConsecutiveDefenseMoves = 0;
// Clear old position
var oldPos = unit.GridPosition;
if (cellOccupants[oldPos.x, oldPos.y] == unit)
{
cellOccupants[oldPos.x, oldPos.y] = null;
}
// Find nearest empty cell if position is occupied
if (cellOccupants[position.x, position.y] != null)
{
position = FindNearestEmptyCell(position);
}
unit.GridPosition = position;
unitPositions[unit] = position;
cellOccupants[position.x, position.y] = unit;
unit.SetWorldPosition(GridToWorld(position));
// Restore visual
if (unit.SpriteRenderer != null)
{
var color = unit.SpriteRenderer.color;
color.a = 1f;
unit.SpriteRenderer.color = color;
}
}
Vector2Int FindNearestEmptyCell(Vector2Int center)
{
for (int radius = 1; radius < 10; radius++)
{
for (int dx = -radius; dx <= radius; dx++)
{
for (int dy = -radius; dy <= radius; dy++)
{
var pos = center + new Vector2Int(dx, dy);
if (IsInBounds(pos) && cellOccupants[pos.x, pos.y] == null)
{
return pos;
}
}
}
}
return center;
}
void EndTurn()
{
SelectUnit(null);
turnNumber++;
// Process respawn timers
ProcessRespawns();
// Recalculate visibility
RecalculateVisibility();
// Switch teams
currentTeam = currentTeam == Team.Blue ? Team.Red : Team.Blue;
UpdateUI();
Debug.Log($"Turn {turnNumber}: {currentTeam}'s turn");
}
void ProcessRespawns()
{
foreach (var unit in blueUnits)
{
if (unit.IsTaggedOut)
{
unit.RespawnTurnsRemaining--;
if (unit.RespawnTurnsRemaining <= 0)
{
int idx = blueUnits.IndexOf(unit);
int x = ZoneBoundaries.BoardWidth / 2 - 1 + (idx % 3);
int y = 2 + (idx / 3);
RespawnUnit(unit, new Vector2Int(x, y));
Debug.Log($"Blue unit {unit.UnitId} respawned!");
}
}
}
foreach (var unit in redUnits)
{
if (unit.IsTaggedOut)
{
unit.RespawnTurnsRemaining--;
if (unit.RespawnTurnsRemaining <= 0)
{
int idx = redUnits.IndexOf(unit);
int x = ZoneBoundaries.BoardWidth / 2 - 1 + (idx % 3);
int y = ZoneBoundaries.BoardHeight - 3 - (idx / 3);
RespawnUnit(unit, new Vector2Int(x, y));
Debug.Log($"Red unit {unit.UnitId} respawned!");
}
}
}
}
void EndGame(Team winner)
{
gameOver = true;
if (gameOverText != null)
{
gameOverText.text = winner == Team.Blue ? "BLUE WINS!" : "RED WINS!";
gameOverText.color = winner == Team.Blue ? Color.blue : Color.red;
gameOverText.gameObject.SetActive(true);
}
Debug.Log($"{winner} wins!");
}
void UpdateUI()
{
if (scoreText != null)
{
scoreText.text = $"{blueScore} - {redScore}";
}
if (turnText != null)
{
string turnIndicator = currentTeam == Team.Blue ? "BLUE'S TURN" : "RED'S TURN";
turnText.text = turnIndicator;
turnText.color = currentTeam == Team.Blue ? Color.blue : Color.red;
}
}
void UpdateFlagVisuals()
{
// Blue flag follows carrier or stays at position
if (blueFlagCarrier != null && !blueFlagCarrier.IsTaggedOut)
{
blueFlagPosition = blueFlagCarrier.GridPosition;
blueFlagGO.transform.position = GridToWorld(blueFlagPosition) + new Vector2(0.2f, 0.2f);
}
else
{
blueFlagGO.transform.position = GridToWorld(blueFlagPosition);
}
// Red flag follows carrier or stays at position
if (redFlagCarrier != null && !redFlagCarrier.IsTaggedOut)
{
redFlagPosition = redFlagCarrier.GridPosition;
redFlagGO.transform.position = GridToWorld(redFlagPosition) + new Vector2(0.2f, 0.2f);
}
else
{
redFlagGO.transform.position = GridToWorld(redFlagPosition);
}
// Apply fog of war visibility to flags
bool blueFlagVisible = visibleToBlue.Contains(blueFlagPosition) || blueFlagCarrier != null;
bool redFlagVisible = visibleToBlue.Contains(redFlagPosition) || redFlagCarrier != null;
// For now, in single-player, Blue is the human player, so we apply Blue's visibility
redFlagGO.GetComponent<SpriteRenderer>().enabled = redFlagVisible;
// Blue flag is always visible to blue player
blueFlagGO.GetComponent<SpriteRenderer>().enabled = true;
}
// Fog of War
void RecalculateVisibility()
{
visibleToBlue.Clear();
visibleToRed.Clear();
foreach (var unit in blueUnits)
{
if (unit.IsTaggedOut) continue;
AddVisibleCells(unit.GridPosition, visibleToBlue);
}
foreach (var unit in redUnits)
{
if (unit.IsTaggedOut) continue;
AddVisibleCells(unit.GridPosition, visibleToRed);
}
// Update enemy visibility based on Blue's vision (human player)
foreach (var enemy in redUnits)
{
bool visible = visibleToBlue.Contains(enemy.GridPosition) || enemy.IsTaggedOut;
if (enemy.SpriteRenderer != null)
{
enemy.SpriteRenderer.enabled = visible;
}
}
UpdateFlagVisuals();
}
void AddVisibleCells(Vector2Int center, HashSet<Vector2Int> visibleSet)
{
for (int dx = -VisionRadius; dx <= VisionRadius; dx++)
{
for (int dy = -VisionRadius; dy <= VisionRadius; dy++)
{
var cell = center + new Vector2Int(dx, dy);
if (IsInBounds(cell))
{
visibleSet.Add(cell);
}
}
}
}
// AI interface
public void ExecuteAIMove(GridUnit unit, Vector2Int destination)
{
if (gameOver) return;
if (unit.Team != currentTeam) return;
// Check speed nerf
if (IsDefending(unit) && unit.ConsecutiveDefenseMoves % 4 == 3)
{
Debug.Log($"AI unit {unit.UnitId} skips move (defense speed nerf)");
EndTurn();
return;
}
ExecuteMove(unit, destination);
EndTurn();
}
public void AISkipTurn()
{
if (gameOver) return;
EndTurn();
}
public Team GetCurrentTeam() => currentTeam;
public bool IsGameOver() => gameOver;
public List<GridUnit> GetUnits(Team team) => team == Team.Blue ? blueUnits : redUnits;
public HashSet<Vector2Int> GetVisibleCells(Team team) => team == Team.Blue ? visibleToBlue : visibleToRed;
public Vector2Int GetEnemyFlagPosition(Team team) => team == Team.Blue ? redFlagPosition : blueFlagPosition;
public GridUnit GetFlagCarrier(Team flagTeam) => flagTeam == Team.Blue ? blueFlagCarrier : redFlagCarrier;
// Utility functions
public ZoneOwner GetZoneOwner(int y) => y switch
{
< ZoneBoundaries.TeamBlueDefenseEnd => ZoneOwner.Blue,
< ZoneBoundaries.NeutralEnd => ZoneOwner.Neutral,
_ => ZoneOwner.Red
};
public bool IsDefending(GridUnit unit)
{
var zone = GetZoneOwner(unit.GridPosition.y);
return (unit.Team == Team.Blue && zone == ZoneOwner.Blue) ||
(unit.Team == Team.Red && zone == ZoneOwner.Red);
}
public bool IsInBounds(Vector2Int pos) =>
pos.x >= 0 && pos.x < ZoneBoundaries.BoardWidth &&
pos.y >= 0 && pos.y < ZoneBoundaries.BoardHeight;
public Vector2 GridToWorld(Vector2Int gridPos)
{
// Center the board
float offsetX = -ZoneBoundaries.BoardWidth * CellSize / 2f + CellSize / 2f;
float offsetY = -ZoneBoundaries.BoardHeight * CellSize / 2f + CellSize / 2f;
return new Vector2(
gridPos.x * CellSize + offsetX,
gridPos.y * CellSize + offsetY
);
}
public Vector2Int WorldToGrid(Vector2 worldPos)
{
float offsetX = -ZoneBoundaries.BoardWidth * CellSize / 2f;
float offsetY = -ZoneBoundaries.BoardHeight * CellSize / 2f;
int x = Mathf.FloorToInt((worldPos.x - offsetX) / CellSize);
int y = Mathf.FloorToInt((worldPos.y - offsetY) / CellSize);
return new Vector2Int(x, y);
}
// Helper to create a colored sprite
GameObject CreateSprite(string name, Color color, float width, float height)
{
var go = new GameObject(name);
var sr = go.AddComponent<SpriteRenderer>();
sr.sprite = GetRectSprite();
sr.color = color;
go.transform.localScale = new Vector3(width, height, 1);
return go;
}
static Sprite cachedSprite;
static Sprite GetRectSprite()
{
if (cachedSprite != null) return cachedSprite;
var tex = new Texture2D(1, 1);
tex.SetPixel(0, 0, Color.white);
tex.Apply();
cachedSprite = Sprite.Create(tex, new Rect(0, 0, 1, 1), new Vector2(0.5f, 0.5f), 1);
return cachedSprite;
}
}

View File

@@ -0,0 +1,37 @@
using UnityEngine;
public enum Team { Blue, Red }
public class GridUnit
{
public int UnitId;
public Team Team;
public Vector2Int GridPosition;
public int ConsecutiveDefenseMoves;
public bool IsTaggedOut;
public int RespawnTurnsRemaining;
// Visual representation
public GameObject GameObject;
public SpriteRenderer SpriteRenderer;
public GridUnit(int unitId, Team team, Vector2Int position, GameObject go)
{
UnitId = unitId;
Team = team;
GridPosition = position;
ConsecutiveDefenseMoves = 0;
IsTaggedOut = false;
RespawnTurnsRemaining = 0;
GameObject = go;
SpriteRenderer = go.GetComponent<SpriteRenderer>();
}
public void SetWorldPosition(Vector2 worldPos)
{
if (GameObject != null)
{
GameObject.transform.position = new Vector3(worldPos.x, worldPos.y, 0);
}
}
}

View File

@@ -39,7 +39,7 @@ MonoBehaviour:
m_ExplicitNullChecks: 0
m_ExplicitDivideByZeroChecks: 0
m_ExplicitArrayBoundsChecks: 0
m_CompressionType: -1
m_CompressionType: 0
m_InstallInBuildFolder: 0
m_InsightsSettingsContainer:
m_BuildProfileEngineDiagnosticsState: 2

View File

@@ -39,7 +39,7 @@ MonoBehaviour:
m_ExplicitNullChecks: 0
m_ExplicitDivideByZeroChecks: 0
m_ExplicitArrayBoundsChecks: 0
m_CompressionType: -1
m_CompressionType: 0
m_InstallInBuildFolder: 0
m_InsightsSettingsContainer:
m_BuildProfileEngineDiagnosticsState: 2

View File

@@ -13,6 +13,7 @@ MonoBehaviour:
m_Name:
m_EditorClassIdentifier:
shaderVariantLimit: 128
overrideShaderVariantLimit: 0
customInterpolatorErrorThreshold: 32
customInterpolatorWarningThreshold: 16
customHeatmapValues: {fileID: 0}

View File

@@ -0,0 +1,67 @@
---
date: 2026-02-01
topic: teaser-prototype
---
# Teaser Prototype: Playable Game Core
## What We're Building
A minimal playable teaser that captures the "practiced chaos" of Neighborhood Quarterback - the Rocket League-style feeling where chaos has patterns you can learn to exploit.
**Scope:**
- 1v1 vs AI opponent
- 5 identical units per side
- Draw-routes for commanding units
- Tag-out respawn (captured units respawn at base after delay)
- Simple fog of war (see near your units only)
- Backyard-style asymmetric map with houses/fences
- First to 3 points (points for flag grab AND returning flag to base)
## Why This Approach
We chose **Minimal Playable Core** over polished slice or systems-first approaches because:
1. **Validate the feel first** - The soul doc's "practiced chaos" needs playtesting to verify
2. **Fast iteration** - Rough edges are fine if we can quickly change what matters
3. **Avoid over-engineering** - Don't build robust systems for unvalidated design
## Key Decisions
- **AI opponent over multiplayer**: Simpler to build, can playtest alone, control pacing
- **Draw routes over click-to-move**: More tactical, matches the "quarterback" command fantasy
- **Tag-out over jail escort**: Simpler first pass; jail escort adds complexity we can add later
- **Fog of war included**: Core to the mind game, worth the complexity
- **5 units (not 3)**: Matches soul doc, enables interesting squad tactics
- **All identical units**: No classes yet; focus on positioning/routes before differentiation
- **Asymmetric map**: Thematic "backyard" feel even if harder to balance
- **First to 3 with grab+return points**: Creates multiple scoring opportunities per round
## What Success Looks Like
When playing, you should see:
- Moments where you read the AI's pattern and exploit it
- Chaotic scrambles when plans collide
- "Almost had it" flag runs that feel learnable
- Fog reveal moments that create tension
## Out of Scope (For Now)
- Class differentiation (Sneak/Patrol/Speed)
- Jail escort mechanics
- Motion lights
- Pre-phase setup (placing flag/jail)
- Multiplayer networking
- Polish/juice/animations
## Open Questions for Planning
1. **Map layout**: What's the minimum topology for interesting play? Lanes, chokepoints, shortcuts?
2. **AI behavior**: How smart does AI need to be to create "practiced chaos"?
3. **Route-drawing UX**: Click-drag? Waypoints? How to visualize planned route?
4. **Fog implementation**: Tile-based? Raycast? Mesh-based reveal?
5. **Scoring flow**: What happens after a point? Reset positions? Continuous play?
## Next Steps
Run `/workflows:plan` to break this down into implementation tasks.

View File

@@ -0,0 +1,103 @@
# Asymmetric Grid CTF Board
**Date:** 2026-02-04
**Status:** Ready for planning
## What We're Building
A turn-based capture-the-flag game on a 20x50 grid with asymmetric movement mechanics. Each team has 3 pieces that move differently depending on which zone they're in:
- **Offensive zone (enemy territory):** Orthogonal movement only (Manhattan distance)
- **Defensive zone (home territory):** Diagonal movement only (Chebyshev distance)
- **Neutral zone (center):** Both teams move orthogonally (on offense)
The board is mirrored: Team A's defensive zone is Team B's offensive zone, and vice versa.
### Core Mechanics
1. **Simultaneous turns:** Both teams plan moves secretly, then execute at the same time
2. **Fog of war:** Each piece sees 3 cells in any direction; the rest is hidden
3. **Collision resolution:** Defender wins ties (piece in their defensive zone captures invader)
4. **Defense speed nerf:** Defensive movement is 75% speed (skip every 4th move in defense zone)
5. **Victory condition:** Capture enemy flag from their base and return it to your base
## Why This Approach
### Pure Grid Replacement over Hybrid
The PDF's game theory analysis is fundamentally about discrete move counts (Manhattan vs Chebyshev distance). Free-form movement with grid constraints would:
- Complicate collision detection
- Make fog of war harder to compute
- Obscure the strategic depth the grid creates
A clean grid system directly implements the analyzed mechanics.
### Simultaneous Turns over Turn-Based
Simultaneous planning creates the "mixed-strategy game" described in the PDF. If turns were sequential, the reactive player always has perfect information. Simultaneous moves mean:
- Offense can commit to a direction without the defense knowing
- Both teams must predict opponent behavior
- Creates bluffing and misdirection opportunities
### Visible Grid
Players need to understand their movement options. The orthogonal green squares and diagonal red squares from the PDF communicate which directions are legal at a glance.
## Key Decisions
| Decision | Choice | Rationale |
|----------|--------|-----------|
| Board size | 20x50 | Wide enough for 3 pieces per side with meaningful positioning |
| Zone proportions | 20x20 defense, 10x10 neutral, 20x20 defense | Small neutral = more defensive play per user request |
| Movement per turn | 1 cell | Matches PDF analysis; multi-cell would change game theory |
| Vision radius | 3 cells | Creates meaningful information asymmetry without total blindness |
| Defense speed | 75% (3 moves per 4 turns) | PDF analysis shows this creates balanced mixed-strategy game |
| Collision rule | Defender wins | Rewards positioning in your territory |
| Flag location | Back of defensive zone | Classic CTF setup |
## Open Questions
1. **How to visualize fog of war?** Options: darken hidden cells, hide them entirely, show "last known" positions
2. **What happens to flag carrier if tagged?** Drop flag? Flag returns to base?
3. **Respawn mechanics?** Where do tagged pieces respawn? How long until they can act?
4. **Turn timer?** Unlimited planning time or forced time limit?
5. **AI opponent?** Should we build AI for single-player, or multiplayer-only initially?
## Grid Visual Reference
The PDF shows a pattern where:
- Green squares form an orthogonal grid (offense paths)
- Red diagonal lines overlay, creating larger diamond-shaped cells (defense paths)
- The two grids intersect, meaning some cells are reachable by both movement types
For implementation, we need to define:
- Cell size in world units
- How to render the dual-grid overlay
- Visual distinction between zones (Team A defense, neutral, Team B defense)
## Technical Considerations
### Current Architecture Impact
The existing `Game.cs`, `Unit.cs`, and `RouteDrawer.cs` will need significant changes:
- Replace `RouteDrawer` path drawing with click-to-select, click-to-move
- Replace continuous movement in `Unit.cs` with discrete grid steps
- Add turn manager for simultaneous move resolution
- Add fog of war system (current `Visibility.cs` is radius-based, needs grid conversion)
### New Components Needed
1. **GridBoard** - Manages 20x50 cell array, zone definitions, visual rendering
2. **TurnManager** - Handles move planning phase, simultaneous execution, turn counting
3. **GridMovement** - Validates moves based on zone type, handles defense speed nerf
4. **FogOfWar** - Computes visible cells per team, hides/reveals pieces
5. **CollisionResolver** - Determines outcomes when pieces occupy same cell
## Next Steps
Run `/workflows:plan` to create implementation plan addressing:
1. Grid data structure and rendering
2. Turn system and move planning UI
3. Zone-based movement validation
4. Fog of war implementation
5. Collision and capture mechanics

View File

@@ -254,18 +254,18 @@ Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>"
## Acceptance Criteria
- [ ] Unity 6 LTS project opens without errors
- [ ] URP 2D Renderer is active (check Graphics settings)
- [ ] New Input System is the active input handling mode
- [ ] Folder structure matches spec (`Features/`, `Shared/`, `Settings/`, `Scenes/`)
- [ ] `GameInputActions` asset exists with placeholder actions
- [ ] Android build target configured (IL2CPP, ARM64, API 24+)
- [ ] iOS build target configured (IL2CPP, ARM64, iOS 13+)
- [ ] Desktop build targets configured
- [ ] Main.unity scene has Global Light 2D with low intensity
- [ ] `.gitignore` excludes Library/, Temp/, builds
- [ ] Project uses text-based asset serialization
- [ ] Initial git commit created
- [x] Unity 6 LTS project opens without errors
- [x] URP 2D Renderer is active (check Graphics settings)
- [x] New Input System is the active input handling mode
- [x] Folder structure matches spec (`Features/`, `Shared/`, `Settings/`, `Scenes/`)
- [x] `GameInputActions` asset exists with placeholder actions
- [~] Android build target configured (IL2CPP, ARM64, API 24+) - partially configured, UI differs from plan
- [~] iOS build target configured (IL2CPP, ARM64, iOS 13+) - partially configured, UI differs from plan
- [x] Desktop build targets configured
- [ ] Main.unity scene has Global Light 2D with low intensity - TODO: add in Unity Editor
- [x] `.gitignore` excludes Library/, Temp/, builds
- [x] Project uses text-based asset serialization
- [x] Initial git commit created
## Files Created/Modified

View File

@@ -0,0 +1,346 @@
---
title: "feat: Teaser Prototype Playable Core"
type: feat
date: 2026-02-01
revised: 2026-02-01
---
# Teaser Prototype: Playable Core (Simplified)
## Overview
Build a minimal playable 1v1 capture-the-flag teaser that captures the "practiced chaos" of Neighborhood Quarterback - where chaos has patterns you can learn to exploit, like Rocket League.
**Target experience:** Fast rounds with flag grabs, chases, tag-outs, and scrambles. Players should feel "I almost had it" and "I can learn this."
## Guiding Principle
**Build the skateboard, not the car chassis.** Get something playable in days, not weeks. Polish comes after validating the core loop is fun.
## Proposed Solution
6 scripts, 3 phases, ~15 tasks:
```
Assets/Scripts/
├── Game.cs # Score, reset, win, spawn
├── Unit.cs # Movement, state, respawn, flag carrying
├── RouteDrawer.cs # Click-drag to draw routes
├── Flag.cs # Pickup, drop, return
├── Visibility.cs # Simple sprite show/hide (no shaders)
└── SimpleAI.cs # Chase flag or flag carrier
```
No feature folders for MVP. No managers. Refactor when needed.
## Technical Decisions
| Decision | Choice | Rationale |
|----------|--------|-----------|
| Pathfinding | None | Draw route, unit follows, stops at obstacles |
| Fog of War | Sprite SetActive | Hide enemies outside vision radius. No shaders. |
| State | Bools/enums on scripts | No state machine frameworks |
| AI | One behavior | Chase player flag (or flag carrier) |
| Events | Direct method calls | No event bus for 6 scripts |
## Constants (Hardcoded, Tune Later)
```csharp
// In Game.cs - move to ScriptableObject if needed
const float UnitSpeed = 5f;
const float VisionRadius = 4f;
const float TagRadius = 0.75f;
const float RespawnDelay = 3f;
const float FlagReturnDelay = 5f;
const int WinScore = 3;
```
---
## Phase 1: Movement & Map (3-4 days)
**Goal:** Draw routes, units follow them, obstacles block.
### Tasks
- [x] **1.1** Create placeholder art in Main.unity:
- Green plane (ground, ~40x30 units)
- Gray rectangles (4-6 houses as obstacles with BoxCollider2D)
- Colored circles (units - blue team, red team)
- Two base zones (opposite corners)
- [x] **1.2** Create `Unit.cs`:
```csharp
public class Unit : MonoBehaviour
{
public enum Team { Player, Enemy }
public Team team;
public bool isTaggedOut;
public bool hasFlag;
List<Vector2> route;
int routeIndex;
public void SetRoute(List<Vector2> waypoints) { ... }
void Update() { /* follow route, stop at end */ }
public void TagOut() { /* disable, start respawn coroutine */ }
IEnumerator Respawn() { /* wait 3s, teleport to base, enable */ }
}
```
- [x] **1.3** Create `RouteDrawer.cs`:
- On mouse down over player unit: start route
- While dragging: collect points, draw LineRenderer preview
- On mouse up: call `unit.SetRoute(points)`
- Clear line after route applied
- [x] **1.4** Create `Game.cs` (partial):
```csharp
public class Game : MonoBehaviour
{
public Unit[] playerUnits; // Assign in inspector
public Unit[] enemyUnits;
public Transform playerBase;
public Transform enemyBase;
void Start() { SpawnUnits(); }
void SpawnUnits() { /* position 5 units at each base */ }
}
```
- [x] **1.5** Wire up scene:
- Create 5 Unit prefabs per team
- Add colliders to obstacles
- Test: draw route, unit follows, stops at obstacle
**Verification:**
- [ ] Can draw route on player unit, unit follows
- [ ] Unit stops when hitting obstacle
- [ ] Unit stops at end of route
- [ ] New route replaces old route
- [ ] Enemy units visible but not controllable
---
## Phase 2: Flag, Tagging, Scoring (2-3 days)
**Goal:** Grab flag, tag enemies, score points, win.
### Tasks
- [x] **2.1** Create `Flag.cs`:
```csharp
public class Flag : MonoBehaviour
{
public Unit.Team team;
public Transform homePosition;
public Unit carriedBy;
float dropTimer;
void Update()
{
if (carriedBy != null)
transform.position = carriedBy.transform.position;
else if (transform.position != homePosition.position)
HandleDroppedState();
}
public void Pickup(Unit unit) { carriedBy = unit; unit.hasFlag = true; }
public void Drop() { carriedBy.hasFlag = false; carriedBy = null; dropTimer = 5f; }
void ReturnHome() { transform.position = homePosition.position; }
}
```
- [x] **2.2** Add flag pickup detection:
- OnTriggerEnter2D: if enemy unit enters flag trigger, Pickup()
- In `Game.cs`: when unit with flag enters own base, Score()
- [x] **2.3** Add tagging to `Unit.cs`:
- OnTriggerEnter2D: if enemy unit overlaps
- Determine loser: farther from own base gets tagged
- (Or for more chaos: both get tagged)
- If tagged unit has flag, call flag.Drop()
- [x] **2.4** Add scoring to `Game.cs`:
```csharp
int playerScore, enemyScore;
public void Score(Unit.Team team)
{
if (team == Unit.Team.Player) playerScore++;
else enemyScore++;
Debug.Log($"Score: {playerScore} - {enemyScore}");
if (playerScore >= WinScore || enemyScore >= WinScore)
EndGame();
else
ResetRound();
}
void ResetRound()
{
// Return flags, respawn all units at bases
}
```
- [x] **2.5** Add simple UI:
- TextMeshPro showing score
- "YOU WIN" / "YOU LOSE" text on game end
- (No menu - press Play in editor)
**Verification:**
- [ ] Walking over enemy flag picks it up
- [ ] Flag follows carrier
- [ ] Reaching base with flag scores point
- [ ] Overlapping enemy triggers tag-out
- [ ] Tagged unit respawns after 3 seconds
- [ ] Dropped flag returns home after 5 seconds
- [ ] First to 3 wins
---
## Phase 3: Visibility & AI (2-3 days)
**Goal:** Can't see enemies outside vision range. AI provides opposition.
### Tasks
- [x] **3.1** Create `Visibility.cs`:
```csharp
public class Visibility : MonoBehaviour
{
public Unit[] playerUnits;
public Unit[] enemyUnits;
public Flag enemyFlag;
void Update()
{
foreach (var enemy in enemyUnits)
{
bool visible = IsVisibleToAnyPlayerUnit(enemy.transform.position);
enemy.GetComponent<SpriteRenderer>().enabled = visible;
}
// Also hide enemy flag if not carried and not visible
if (enemyFlag.carriedBy == null)
enemyFlag.GetComponent<SpriteRenderer>().enabled =
IsVisibleToAnyPlayerUnit(enemyFlag.transform.position);
}
bool IsVisibleToAnyPlayerUnit(Vector2 pos)
{
foreach (var unit in playerUnits)
{
if (unit.isTaggedOut) continue;
if (Vector2.Distance(unit.transform.position, pos) < VisionRadius)
return true;
}
return false;
}
}
```
- [x] **3.2** Create `SimpleAI.cs`:
```csharp
public class SimpleAI : MonoBehaviour
{
public Unit[] aiUnits;
public Flag playerFlag;
public Transform aiBase;
float decisionTimer;
void Update()
{
decisionTimer -= Time.deltaTime;
if (decisionTimer <= 0)
{
MakeDecisions();
decisionTimer = 0.5f; // Decide every 0.5s
}
}
void MakeDecisions()
{
foreach (var unit in aiUnits)
{
if (unit.isTaggedOut) continue;
Vector2 target;
if (unit.hasFlag)
target = aiBase.position; // Return flag
else if (playerFlag.carriedBy != null)
target = playerFlag.carriedBy.transform.position; // Chase carrier
else
target = playerFlag.transform.position; // Go for flag
// Simple route: straight line to target
unit.SetRoute(new List<Vector2> { target });
}
}
}
```
- [x] **3.3** Add slight route randomness:
- Offset target by small random amount
- Prevents all AI units clumping perfectly
- [x] **3.4** Playtest & tune:
- Adjust VisionRadius, TagRadius, speeds
- Make AI beatable but not trivial
**Verification:**
- [ ] Enemy units hidden when far from player units
- [ ] Enemies appear when player unit gets close
- [ ] AI units move toward player flag
- [ ] AI chases player flag carrier
- [ ] AI returns flag to base when carrying
- [ ] Can beat AI after 2-3 attempts
---
## Acceptance Criteria (MVP)
- [ ] Game starts with 5 units per side at bases
- [ ] Draw route on unit, unit follows path
- [ ] Unit stops at obstacles
- [ ] Grabbing enemy flag awards 1 point
- [ ] Returning flag to base (with own flag present) awards 1 more point
- [ ] Overlapping enemies triggers tag-out (farther from base loses)
- [ ] Tagged units respawn at base after 3 seconds
- [ ] Enemies only visible within vision radius of player units
- [ ] AI controls enemy team, chases flag
- [ ] First to 3 points wins
---
## Out of Scope (v2)
- Shader-based fog of war (smooth edges, feathering)
- Unit classes (Sneak/Patrol/Speed)
- Jail escort mechanics
- Motion lights
- Pre-phase setup
- Multiplayer
- AI with strategic roles
- Route obstacle preview
- Audio
- Main menu
- Mobile optimization
---
## What We're Testing
This prototype answers one question: **Is commanding units in CTF fun?**
If yes → Add fog polish, AI strategy, classes
If no → Revisit core mechanics before adding complexity
---
## References
- Soul Doc: `soul.md`
- Brainstorm: `docs/brainstorms/2026-02-01-teaser-prototype-brainstorm.md`
- Input actions: `Assets/Settings/Input/GameInputActions.inputactions`

View File

@@ -0,0 +1,403 @@
---
title: "feat: Asymmetric Grid CTF Board"
type: feat
date: 2026-02-04
brainstorm: docs/brainstorms/2026-02-04-asymmetric-grid-ctf-brainstorm.md
---
# feat: Asymmetric Grid CTF Board
## Overview
Replace the current real-time continuous movement CTF game with a turn-based grid system featuring asymmetric movement mechanics. Each team's 3 pieces move differently based on which zone they occupy: orthogonal (Manhattan) in offensive zones, diagonal (Chebyshev) in defensive zones.
**Key changes from current implementation:**
- Continuous free-form movement → Discrete grid-based movement
- Real-time gameplay → Alternating turn-based
- Uniform movement → Zone-dependent movement rules
## Problem Statement
The current implementation is a real-time CTF game where:
- Units move continuously along drawn paths
- All units have the same movement capabilities
- The defense has no inherent advantage
The game design analysis (see `docs/CAPTURE THE FLAG.pdf`) shows that asymmetric movement creates interesting strategic depth:
- Defense moving diagonally covers more ground (Chebyshev distance)
- Offense moving orthogonally is predictable (Manhattan distance)
- With 75% defense speed nerf, this becomes a balanced mixed-strategy game
## Proposed Solution
Build a 20x50 grid-based board with three zones and alternating turn-based gameplay.
### Board Layout
```
┌────────────────────────────────────────────────────────┐
│ TEAM B DEFENSE │ Y: 30-49
│ (Team A Offense) │ (20 rows)
│ [Diagonal Movement] │
│ 🚩 Flag B │
├────────────────────────────────────────────────────────┤
│ NEUTRAL ZONE │ Y: 20-29
│ (Both teams on offense) │ (10 rows)
│ [Orthogonal Movement] │
├────────────────────────────────────────────────────────┤
│ TEAM A DEFENSE │ Y: 0-19
│ (Team B Offense) │ (20 rows)
│ [Diagonal Movement] │
│ 🚩 Flag A │
└────────────────────────────────────────────────────────┘
X: 0 ←────────── 20 cells ──────────→ 19
```
### Movement Rules
| Zone (for piece) | Movement Type | Speed |
|------------------|---------------|-------|
| Own Defense | Diagonal (8 directions) | 75% (skip every 4th turn) |
| Enemy Defense (Offense) | Orthogonal (4 directions: N/S/E/W) | 100% |
| Neutral | Orthogonal (4 directions) | 100% |
### Turn Flow (Alternating)
```
┌─────────────────┐
│ PLAYER TURN │ Click unit → click destination → unit moves
└────────┬────────┘
┌─────────────────┐
│ RESOLVE │ Check collision, flag pickup, scoring
└────────┬────────┘
┌─────────────────┐
│ AI TURN │ AI selects and executes move
└────────┬────────┘
┌─────────────────┐
│ RESOLVE │ Check collision, flag pickup, scoring
└────────┬────────┘
Next turn
```
**Note:** Start with alternating turns for simplicity. Simultaneous turns can be added later if alternating feels too simple.
## Technical Approach
### Architecture (3 Classes)
```
Assets/Scripts/
├── Grid/
│ ├── GridBoard.cs # Board state, zones, rendering, input, turn logic
│ ├── GridUnit.cs # Unit data struct
│ └── GridAI.cs # AI decision-making (Phase 3)
├── Game.cs # Bootstrap, update for grid
├── Flag.cs # Adapt for grid coordinates
└── CameraController.cs # Keep as-is
```
### Zone Boundaries (Constants)
```csharp
public static class ZoneBoundaries
{
public const int TeamADefenseEnd = 20; // Y < 20 is Team A defense
public const int NeutralEnd = 30; // Y < 30 is neutral (if >= TeamADefenseEnd)
public const int BoardWidth = 20;
public const int BoardHeight = 50;
}
```
### Data Structures
```csharp
public enum Team { Blue, Red } // Canonical names used everywhere
public enum ZoneOwner { Blue, Neutral, Red }
// GridUnit.cs - minimal data struct
public class GridUnit
{
public int UnitId; // Stable identifier for determinism
public Team Team;
public Vector2Int GridPosition;
public int ConsecutiveDefenseMoves; // Reset when leaving defense zone
public bool IsTaggedOut;
public int RespawnTurnsRemaining; // 0 when active
// Note: HasFlag NOT stored here - query Flag.CarriedBy instead
}
// GridBoard.cs - all game logic in one place
public class GridBoard : MonoBehaviour
{
// Board is a 2D array of unit references (null = empty)
GridUnit[,] cellOccupants = new GridUnit[BoardWidth, BoardHeight];
// Canonical position storage - single source of truth
Dictionary<GridUnit, Vector2Int> unitPositions = new();
public ZoneOwner GetZoneOwner(int y) => y switch
{
< ZoneBoundaries.TeamADefenseEnd => ZoneOwner.Blue,
< ZoneBoundaries.NeutralEnd => ZoneOwner.Neutral,
_ => ZoneOwner.Red
};
public bool IsDefending(GridUnit unit) =>
(unit.Team == Team.Blue && GetZoneOwner(unit.GridPosition.y) == ZoneOwner.Blue) ||
(unit.Team == Team.Red && GetZoneOwner(unit.GridPosition.y) == ZoneOwner.Red);
// Atomic move that keeps both data structures in sync
public void MoveUnit(GridUnit unit, Vector2Int to)
{
var from = unitPositions[unit];
cellOccupants[from.x, from.y] = null;
cellOccupants[to.x, to.y] = unit;
unitPositions[unit] = to;
unit.GridPosition = to;
}
}
```
### Collision Resolution (Deterministic)
Collisions are resolved deterministically by unit ID (lower ID wins ties):
```csharp
void ResolveCollision(GridUnit unitA, GridUnit unitB, Vector2Int cell)
{
// Same team = no collision (can share cell temporarily)
if (unitA.Team == unitB.Team) return;
var zoneOwner = GetZoneOwner(cell.y);
// Defender in their zone always wins
if (unitA.Team == Team.Blue && zoneOwner == ZoneOwner.Blue)
TagOut(unitB);
else if (unitB.Team == Team.Blue && zoneOwner == ZoneOwner.Blue)
TagOut(unitA);
else if (unitA.Team == Team.Red && zoneOwner == ZoneOwner.Red)
TagOut(unitB);
else if (unitB.Team == Team.Red && zoneOwner == ZoneOwner.Red)
TagOut(unitA);
else
{
// Neutral zone: lower UnitId wins (deterministic)
if (unitA.UnitId < unitB.UnitId)
TagOut(unitB);
else
TagOut(unitA);
}
}
```
### Turn Execution Order
Each turn resolves in this exact order:
1. **Speed nerf check** - If unit is defending and `ConsecutiveDefenseMoves % 4 == 3`, skip move
2. **Execute move** - Update position
3. **Collision check** - Tag losing unit if two enemies on same cell
4. **Flag pickup** - Unit on enemy flag cell picks it up
5. **Flag drop** - Tagged unit drops flag at current position
6. **Score check** - Flag carrier in own base scores
7. **Respawn tick** - Decrement `RespawnTurnsRemaining`, respawn if 0
8. **Update visibility** - Toggle enemy sprite visibility (Phase 2)
## Implementation Phases
### Phase 1: Playable Grid
**Goal:** Two humans can play hot-seat CTF on a grid.
**Tasks:**
- [x] Create `GridBoard.cs`:
- Render 20x50 grid using existing `CreateSprite()` helper
- Color zones (blue tint for Blue defense, gray for neutral, red tint for Red defense)
- Handle mouse input (click unit, click destination)
- Implement `GetValidMoves()` with zone-aware movement
- Implement `MoveUnit()` with atomic position update
- Implement collision resolution
- [x] Create `GridUnit.cs` as minimal data struct
- [x] Adapt `Flag.cs` for grid coordinates:
- Flag pickup on entering cell
- Flag drop on tag (stays at cell)
- Flag return when friendly touches it
- Score when carrier reaches own base
- [x] Modify `Game.cs` to instantiate `GridBoard` instead of current map
- [x] Alternating turns: `bool isPlayerTurn`, swap after each move
- [x] Win at 3 points, use existing `gameOverText`
**Files to create:**
- `Assets/Scripts/Grid/GridBoard.cs`
- `Assets/Scripts/Grid/GridUnit.cs`
**Files to modify:**
- `Assets/Scripts/Game.cs`
- `Assets/Scripts/Flag.cs`
**Verification:**
```
Run game → See colored grid with 6 pieces and 2 flags
Click unit → Valid moves highlight (4 or 8 based on zone)
Click valid cell → Unit moves, turn swaps
Move to enemy flag → Pick up flag
Return to base with flag → Score point
Move onto enemy in your zone → Enemy respawns
First to 3 → "You Win" / "You Lose"
```
### Phase 2: Asymmetric Mechanics
**Goal:** Add the mechanics that create strategic depth.
**Tasks:**
- [x] Add fog of war:
- Each unit sees 3 cells (Chebyshev distance)
- Toggle enemy sprite `enabled` based on visibility
- Recalculate after each move
- [x] Add defense speed nerf:
- Track `ConsecutiveDefenseMoves` on GridUnit
- Skip every 4th move when defending
- Reset counter when leaving defense zone
- Visual indicator (dim sprite) when next move will be skipped
**Fog visibility (method in GridBoard):**
```csharp
HashSet<Vector2Int> visibleToBlue = new();
void RecalculateVisibility()
{
visibleToBlue.Clear();
foreach (var unit in blueUnits)
{
if (unit.IsTaggedOut) continue;
for (int dx = -3; dx <= 3; dx++)
for (int dy = -3; dy <= 3; dy++)
{
var cell = unit.GridPosition + new Vector2Int(dx, dy);
if (IsInBounds(cell)) visibleToBlue.Add(cell);
}
}
foreach (var enemy in redUnits)
enemy.Sprite.enabled = visibleToBlue.Contains(enemy.GridPosition);
}
```
**Verification:**
```
Start game → Red units partially hidden
Move Blue unit → Fog reveals new cells
Defender moves 3 times → 4th move skipped (unit dims beforehand)
Defender leaves zone → Counter resets
```
### Phase 3: AI Opponent
**Goal:** Single-player mode.
**Tasks:**
- [x] Create `GridAI.cs`:
- AI respects fog (only sees what its units see)
- Simple strategy: chase visible flag carrier, else advance toward flag
- AI takes turn after player
- [x] Delete `Assets/Scripts/SimpleAI.cs`
**AI decision (single difficulty):**
```csharp
Vector2Int? DecideMove(GridUnit unit)
{
var validMoves = board.GetValidMoves(unit);
if (validMoves.Count == 0) return null;
// Priority 1: Chase visible flag carrier
var carrier = GetVisibleEnemyFlagCarrier();
if (carrier != null)
return validMoves.OrderBy(m => Distance(m, carrier.GridPosition)).First();
// Priority 2: Advance toward enemy flag
var flagPos = enemyFlag.GridPosition;
return validMoves.OrderBy(m => Distance(m, flagPos)).First();
}
```
**Files to create:**
- `Assets/Scripts/Grid/GridAI.cs`
**Files to delete:**
- `Assets/Scripts/SimpleAI.cs`
**Verification:**
```
Start game → AI takes turns after player
AI chases if it sees flag carrier
AI advances toward flag otherwise
AI doesn't react to units outside fog
Full game completes without errors
```
## Deferred (Not MVP)
These features are explicitly deferred until the core loop is validated:
- Simultaneous turns (adds: planned moves storage, submit button, ghost indicators, conflict resolution)
- Turn timer
- Sound effects
- Camera auto-zoom
- Zone labels
- Win/lose screen (use `Debug.Log` or existing `gameOverText`)
- Multiple AI difficulties
- Respawn delay (use instant respawn)
- Flag auto-return timer (flags stay where dropped)
## Edge Cases to Handle
| Edge Case | Resolution |
|-----------|------------|
| Three+ units on same cell | Process collisions pairwise by UnitId order |
| Zone crossing during move | Speed nerf based on starting position |
| Flag dropped in neutral | Can be "returned" by either team touching it |
| Both carriers tagged same turn | Both flags drop (alternating turns makes this impossible) |
| Tagged while about to score | Tag resolves before score check |
| Skip turn with flag | Carrier stays in place, keeps flag |
| Respawn location occupied | Respawn at nearest empty cell in base |
## Acceptance Criteria
### Functional (Phase 1 - MVP)
- [x] 20x50 grid renders with three colored zones
- [x] 6 pieces (3 per team) at starting positions
- [x] Orthogonal movement in offense zones, diagonal in defense
- [x] Alternating turns
- [x] Collision: defender wins in their zone
- [x] Flags: pickup, drop on tag, return on touch, score on base
- [x] First to 3 wins
### Functional (Phase 2)
- [x] 3-cell vision radius per unit
- [x] Enemy units hidden outside fog
- [x] Defenders skip every 4th move
### Functional (Phase 3)
- [x] AI plays Red team
- [x] AI respects fog
- [x] Full game completes
## Success Metrics
1. **Playable:** Full game loop from start to victory works
2. **Fun check:** Does asymmetric movement feel strategically interesting?
Balance testing and engagement metrics deferred until core loop is validated.
## References
- Brainstorm: `docs/brainstorms/2026-02-04-asymmetric-grid-ctf-brainstorm.md`
- Game design PDF: `docs/CAPTURE THE FLAG.pdf`
- Current movement: `Assets/Scripts/Unit.cs:42`
- Bootstrap pattern: `Assets/Scripts/Game.cs:15`