Files
claude-engineering-plugin/plugins/compound-engineering/skills/dspy-ruby/assets/module-template.rb
Kieran Klaassen 6c5b3e40db [2.9.0] Rename plugin to compound-engineering
BREAKING: Plugin renamed from compounding-engineering to compound-engineering.
Users will need to reinstall with the new name:

  claude /plugin install compound-engineering

Changes:
- Renamed plugin directory and all references
- Updated documentation counts (24 agents, 19 commands)
- Added julik-frontend-races-reviewer to docs

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-02 17:32:16 -08:00

327 lines
7.5 KiB
Ruby

# frozen_string_literal: true
# Example DSPy Module Template
# This template demonstrates best practices for creating composable modules
# Basic module with single predictor
class BasicModule < DSPy::Module
def initialize
super
# Initialize predictor with signature
@predictor = DSPy::Predict.new(ExampleSignature)
end
def forward(input_hash)
# Forward pass through the predictor
@predictor.forward(input_hash)
end
end
# Module with Chain of Thought reasoning
class ChainOfThoughtModule < DSPy::Module
def initialize
super
# ChainOfThought automatically adds reasoning to output
@predictor = DSPy::ChainOfThought.new(EmailClassificationSignature)
end
def forward(email_subject:, email_body:)
result = @predictor.forward(
email_subject: email_subject,
email_body: email_body
)
# Result includes :reasoning field automatically
{
category: result[:category],
priority: result[:priority],
reasoning: result[:reasoning],
confidence: calculate_confidence(result)
}
end
private
def calculate_confidence(result)
# Add custom logic to calculate confidence
# For example, based on reasoning length or specificity
result[:confidence] || 0.8
end
end
# Composable module that chains multiple steps
class MultiStepPipeline < DSPy::Module
def initialize
super
# Initialize multiple predictors for different steps
@step1 = DSPy::Predict.new(Step1Signature)
@step2 = DSPy::ChainOfThought.new(Step2Signature)
@step3 = DSPy::Predict.new(Step3Signature)
end
def forward(input)
# Chain predictors together
result1 = @step1.forward(input)
result2 = @step2.forward(result1)
result3 = @step3.forward(result2)
# Combine results as needed
{
step1_output: result1,
step2_output: result2,
final_result: result3
}
end
end
# Module with conditional logic
class ConditionalModule < DSPy::Module
def initialize
super
@simple_classifier = DSPy::Predict.new(SimpleClassificationSignature)
@complex_analyzer = DSPy::ChainOfThought.new(ComplexAnalysisSignature)
end
def forward(text:, complexity_threshold: 100)
# Use different predictors based on input characteristics
if text.length < complexity_threshold
@simple_classifier.forward(text: text)
else
@complex_analyzer.forward(text: text)
end
end
end
# Module with error handling and retry logic
class RobustModule < DSPy::Module
MAX_RETRIES = 3
def initialize
super
@predictor = DSPy::Predict.new(RobustSignature)
@logger = Logger.new(STDOUT)
end
def forward(input, retry_count: 0)
@logger.info "Processing input: #{input.inspect}"
begin
result = @predictor.forward(input)
validate_result!(result)
result
rescue DSPy::ValidationError => e
@logger.error "Validation error: #{e.message}"
if retry_count < MAX_RETRIES
@logger.info "Retrying (#{retry_count + 1}/#{MAX_RETRIES})..."
sleep(2 ** retry_count) # Exponential backoff
forward(input, retry_count: retry_count + 1)
else
@logger.error "Max retries exceeded"
raise
end
end
end
private
def validate_result!(result)
# Add custom validation logic
raise DSPy::ValidationError, "Invalid result" unless result[:category]
raise DSPy::ValidationError, "Low confidence" if result[:confidence] && result[:confidence] < 0.5
end
end
# Module with ReAct agent and tools
class AgentModule < DSPy::Module
def initialize
super
# Define tools for the agent
tools = [
SearchTool.new,
CalculatorTool.new,
DatabaseQueryTool.new
]
# ReAct provides iterative reasoning and tool usage
@agent = DSPy::ReAct.new(
AgentSignature,
tools: tools,
max_iterations: 5
)
end
def forward(task:)
# Agent will autonomously use tools to complete the task
@agent.forward(task: task)
end
end
# Tool definition example
class SearchTool < DSPy::Tool
def call(query:)
# Implement search functionality
results = perform_search(query)
{ results: results }
end
private
def perform_search(query)
# Actual search implementation
# Could call external API, database, etc.
["result1", "result2", "result3"]
end
end
# Module with state management
class StatefulModule < DSPy::Module
attr_reader :history
def initialize
super
@predictor = DSPy::ChainOfThought.new(StatefulSignature)
@history = []
end
def forward(input)
# Process with context from history
context = build_context_from_history
result = @predictor.forward(
input: input,
context: context
)
# Store in history
@history << {
input: input,
result: result,
timestamp: Time.now
}
result
end
def reset!
@history.clear
end
private
def build_context_from_history
@history.last(5).map { |h| h[:result][:summary] }.join("\n")
end
end
# Module that uses different LLMs for different tasks
class MultiModelModule < DSPy::Module
def initialize
super
# Fast, cheap model for simple classification
@fast_predictor = create_predictor(
'openai/gpt-4o-mini',
SimpleClassificationSignature
)
# Powerful model for complex analysis
@powerful_predictor = create_predictor(
'anthropic/claude-3-5-sonnet-20241022',
ComplexAnalysisSignature
)
end
def forward(input, use_complex: false)
if use_complex
@powerful_predictor.forward(input)
else
@fast_predictor.forward(input)
end
end
private
def create_predictor(model, signature)
lm = DSPy::LM.new(model, api_key: ENV["#{model.split('/').first.upcase}_API_KEY"])
DSPy::Predict.new(signature, lm: lm)
end
end
# Module with caching
class CachedModule < DSPy::Module
def initialize
super
@predictor = DSPy::Predict.new(CachedSignature)
@cache = {}
end
def forward(input)
# Create cache key from input
cache_key = create_cache_key(input)
# Return cached result if available
if @cache.key?(cache_key)
puts "Cache hit for #{cache_key}"
return @cache[cache_key]
end
# Compute and cache result
result = @predictor.forward(input)
@cache[cache_key] = result
result
end
def clear_cache!
@cache.clear
end
private
def create_cache_key(input)
# Create deterministic hash from input
Digest::MD5.hexdigest(input.to_s)
end
end
# Usage Examples:
#
# Basic usage:
# module = BasicModule.new
# result = module.forward(field_name: "value")
#
# Chain of Thought:
# module = ChainOfThoughtModule.new
# result = module.forward(
# email_subject: "Can't log in",
# email_body: "I'm unable to access my account"
# )
# puts result[:reasoning]
#
# Multi-step pipeline:
# pipeline = MultiStepPipeline.new
# result = pipeline.forward(input_data)
#
# With error handling:
# module = RobustModule.new
# begin
# result = module.forward(input_data)
# rescue DSPy::ValidationError => e
# puts "Failed after retries: #{e.message}"
# end
#
# Agent with tools:
# agent = AgentModule.new
# result = agent.forward(task: "Find the population of Tokyo")
#
# Stateful processing:
# module = StatefulModule.new
# result1 = module.forward("First input")
# result2 = module.forward("Second input") # Has context from first
# module.reset! # Clear history
#
# With caching:
# module = CachedModule.new
# result1 = module.forward(input) # Computes result
# result2 = module.forward(input) # Returns cached result