Architectural patterns for building prompt-native agent systems. These patterns emerge from the philosophy that features should be defined in prompts, not code, and that tools should be primitives.
## Event-Driven Agent Architecture
The agent runs as a long-lived process that responds to events. Events become prompts.
```
┌─────────────────────────────────────────────────────────────┐
│ Agent Loop │
├─────────────────────────────────────────────────────────────┤
│ Event Source → Agent (Claude) → Tool Calls → Response │
└─────────────────────────────────────────────────────────────┘
│
┌───────────────┼───────────────┐
▼ ▼ ▼
┌─────────┐ ┌──────────┐ ┌───────────┐
│ Content │ │ Self │ │ Data │
│ Tools │ │ Tools │ │ Tools │
└─────────┘ └──────────┘ └───────────┘
(write_file) (read_source) (store_item)
(restart) (list_items)
```
**Key characteristics:**
- Events (messages, webhooks, timers) trigger agent turns
- Agent decides how to respond based on system prompt
- Tools are primitives for IO, not business logic
- State persists between events via data tools
**Example: Discord feedback bot**
```typescript
// Event source
client.on("messageCreate", (message) => {
if (!message.author.bot) {
runAgent({
userMessage: `New message from ${message.author}: "${message.content}"`,
channelId: message.channelId,
});
}
});
// System prompt defines behavior
const systemPrompt = `
When someone shares feedback:
1. Acknowledge their feedback warmly
2. Ask clarifying questions if needed
3. Store it using the feedback tools
4. Update the feedback site
Use your judgment about importance and categorization.
`;
```
## Two-Layer Git Architecture
For self-modifying agents, separate code (shared) from data (instance-specific).
```
┌─────────────────────────────────────────────────────────────┐
│ GitHub (shared repo) │
│ - src/ (agent code) │
│ - site/ (web interface) │
│ - package.json (dependencies) │
│ - .gitignore (excludes data/, logs/) │
└─────────────────────────────────────────────────────────────┘
│
git clone
│
▼
┌─────────────────────────────────────────────────────────────┐
│ Instance (Server) │
│ │
│ FROM GITHUB (tracked): │
│ - src/ → pushed back on code changes │
│ - site/ → pushed, triggers deployment │
│ │
│ LOCAL ONLY (untracked): │
│ - data/ → instance-specific storage │
│ - logs/ → runtime logs │
│ - .env → secrets │
└─────────────────────────────────────────────────────────────┘
```
**Why this works:**
- Code and site are version controlled (GitHub)
- Raw data stays local (instance-specific)
- Site is generated from data, so reproducible
- Automatic rollback via git history
## Multi-Instance Branching
Each agent instance gets its own branch while sharing core code.
```
main # Shared features, bug fixes
├── instance/feedback-bot # Every Reader feedback bot
├── instance/support-bot # Customer support bot
└── instance/research-bot # Research assistant
```
**Change flow:**
| Change Type | Work On | Then |
|-------------|---------|------|
| Core features | main | Merge to instance branches |
| Bug fixes | main | Merge to instance branches |
| Instance config | instance branch | Done |
| Instance data | instance branch | Done |
**Sync tools:**
```typescript
tool("self_deploy", "Pull latest from main, rebuild, restart", ...)
tool("sync_from_instance", "Merge from another instance", ...)
tool("propose_to_main", "Create PR to share improvements", ...)
```
## Site as Agent Output
The agent generates and maintains a website as a natural output, not through specialized site tools.
```
Discord Message
↓
Agent processes it, extracts insights
↓
Agent decides what site updates are needed
↓
Agent writes files using write_file primitive
↓
Git commit + push triggers deployment
↓
Site updates automatically
```
**Key insight:** Don't build site generation tools. Give the agent file tools and teach it in the prompt how to create good sites.
```markdown
## Site Management
You maintain a public feedback site. When feedback comes in:
1. Use write_file to update site/public/content/feedback.json
2. If the site's React components need improvement, modify them
3. Commit changes and push to trigger Vercel deploy
The site should be:
- Clean, modern dashboard aesthetic
- Clear visual hierarchy
- Status organization (Inbox, Active, Done)
You decide the structure. Make it good.
```
## Approval Gates Pattern
Separate "propose" from "apply" for dangerous operations.
```typescript
// Pending changes stored separately
const pendingChanges = new Map();
tool("write_file", async ({ path, content }) => {
if (requiresApproval(path)) {
// Store for approval
pendingChanges.set(path, content);
const diff = generateDiff(path, content);
return {
text: `Change requires approval.\n\n${diff}\n\nReply "yes" to apply.`
};
} else {
// Apply immediately
writeFileSync(path, content);
return { text: `Wrote ${path}` };
}
});
tool("apply_pending", async () => {
for (const [path, content] of pendingChanges) {
writeFileSync(path, content);
}
pendingChanges.clear();
return { text: "Applied all pending changes" };
});
```
**What requires approval:**
- src/*.ts (agent code)
- package.json (dependencies)
- system prompt changes
**What doesn't:**
- data/* (instance data)
- site/* (generated content)
- docs/* (documentation)
## Unified Agent Architecture
One execution engine, many agent types. All agents use the same orchestrator but with different configurations.
```
┌─────────────────────────────────────────────────────────────┐
│ AgentOrchestrator │
├─────────────────────────────────────────────────────────────┤
│ - Lifecycle management (start, pause, resume, stop) │
│ - Checkpoint/restore (for background execution) │
│ - Tool execution │
│ - Chat integration │
└─────────────────────────────────────────────────────────────┘
│ │ │
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ Research │ │ Chat │ │ Profile │
│ Agent │ │ Agent │ │ Agent │
└───────────┘ └───────────┘ └───────────┘
- web_search - read_library - read_photos
- write_file - publish_to_feed - write_file
- read_file - web_search - analyze_image
```
**Implementation:**
```swift
// All agents use the same orchestrator
let session = try await AgentOrchestrator.shared.startAgent(
config: ResearchAgent.create(book: book), // Config varies
tools: ResearchAgent.tools, // Tools vary
context: ResearchAgent.context(for: book) // Context varies
)
// Agent types define their own configuration
struct ResearchAgent {
static var tools: [AgentTool] {
[
FileTools.readFile(),
FileTools.writeFile(),
WebTools.webSearch(),
WebTools.webFetch(),
]
}
static func context(for book: Book) -> String {
"""
You are researching "\(book.title)" by \(book.author).
Save findings to Documents/Research/\(book.id)/
"""
}
}
struct ChatAgent {
static var tools: [AgentTool] {
[
FileTools.readFile(),
FileTools.writeFile(),
BookTools.readLibrary(),
BookTools.publishToFeed(), // Chat can publish directly
WebTools.webSearch(),
]
}
static func context(library: [Book]) -> String {
"""
You help the user with their reading.
Available books: \(library.map { $0.title }.joined(separator: ", "))
"""
}
}
```
**Benefits:**
- Consistent lifecycle management across all agent types
- Automatic checkpoint/resume (critical for mobile)
- Shared tool protocol
- Easy to add new agent types
- Centralized error handling and logging
## Agent-to-UI Communication
When agents take actions, the UI should reflect them immediately. The user should see what the agent did.
**Pattern 1: Shared Data Store (Recommended)**
Agent writes through the same service the UI observes:
```swift
// Shared service
class BookLibraryService: ObservableObject {
static let shared = BookLibraryService()
@Published var books: [Book] = []
@Published var feedItems: [FeedItem] = []
func addFeedItem(_ item: FeedItem) {
feedItems.append(item)
persist()
}
}
// Agent tool writes through shared service
tool("publish_to_feed", async ({ bookId, content, headline }) => {
let item = FeedItem(bookId: bookId, content: content, headline: headline)
BookLibraryService.shared.addFeedItem(item) // Same service UI uses
return { text: "Published to feed" }
})
// UI observes the same service
struct FeedView: View {
@StateObject var library = BookLibraryService.shared
var body: some View {
List(library.feedItems) { item in
FeedItemRow(item: item)
// Automatically updates when agent adds items
}
}
}
```
**Pattern 2: File System Observation**
For file-based data, watch the file system:
```swift
class ResearchWatcher: ObservableObject {
@Published var files: [URL] = []
private var watcher: DirectoryWatcher?
func watch(bookId: String) {
let path = documentsURL.appendingPathComponent("Research/\(bookId)")
watcher = DirectoryWatcher(path: path) { [weak self] in
self?.reload(from: path)
}
reload(from: path)
}
}
// Agent writes files
tool("write_file", { path, content }) -> {
writeFile(documentsURL.appendingPathComponent(path), content)
// DirectoryWatcher triggers UI update automatically
}
```
**Pattern 3: Event Bus (Cross-Component)**
For complex apps with multiple independent components:
```typescript
// Shared event bus
const agentEvents = new EventEmitter();
// Agent tool emits events
tool("publish_to_feed", async ({ content }) => {
const item = await feedService.add(content);
agentEvents.emit('feed:new-item', item);
return { text: "Published" };
});
// UI components subscribe
function FeedView() {
const [items, setItems] = useState([]);
useEffect(() => {
const handler = (item) => setItems(prev => [...prev, item]);
agentEvents.on('feed:new-item', handler);
return () => agentEvents.off('feed:new-item', handler);
}, []);
return ;
}
```
**What to avoid:**
```swift
// BAD: UI doesn't observe agent changes
// Agent writes to database directly
tool("publish_to_feed", { content }) {
database.insert("feed", content) // UI doesn't see this
}
// UI loads once at startup, never refreshes
struct FeedView: View {
let items = database.query("feed") // Stale!
}
```
## Model Tier Selection
Different agents need different intelligence levels. Use the cheapest model that achieves the outcome.
| Agent Type | Recommended Tier | Reasoning |
|------------|-----------------|-----------|
| Chat/Conversation | Balanced | Fast responses, good reasoning |
| Research | Balanced | Tool loops, not ultra-complex synthesis |
| Content Generation | Balanced | Creative but not synthesis-heavy |
| Complex Analysis | Powerful | Multi-document synthesis, nuanced judgment |
| Profile/Onboarding | Powerful | Photo analysis, complex pattern recognition |
| Simple Queries | Fast/Haiku | Quick lookups, simple transformations |
**Implementation:**
```swift
enum ModelTier {
case fast // claude-3-haiku: Quick, cheap, simple tasks
case balanced // claude-3-sonnet: Good balance for most tasks
case powerful // claude-3-opus: Complex reasoning, synthesis
}
struct AgentConfig {
let modelTier: ModelTier
let tools: [AgentTool]
let systemPrompt: String
}
// Research agent: balanced tier
let researchConfig = AgentConfig(
modelTier: .balanced,
tools: researchTools,
systemPrompt: researchPrompt
)
// Profile analysis: powerful tier (complex photo interpretation)
let profileConfig = AgentConfig(
modelTier: .powerful,
tools: profileTools,
systemPrompt: profilePrompt
)
// Quick lookup: fast tier
let lookupConfig = AgentConfig(
modelTier: .fast,
tools: [readLibrary],
systemPrompt: "Answer quick questions about the user's library."
)
```
**Cost optimization strategies:**
- Start with balanced tier, only upgrade if quality insufficient
- Use fast tier for tool-heavy loops where each turn is simple
- Reserve powerful tier for synthesis tasks (comparing multiple sources)
- Consider token limits per turn to control costs
## Questions to Ask When Designing
1. **What events trigger agent turns?** (messages, webhooks, timers, user requests)
2. **What primitives does the agent need?** (read, write, call API, restart)
3. **What decisions should the agent make?** (format, structure, priority, action)
4. **What decisions should be hardcoded?** (security boundaries, approval requirements)
5. **How does the agent verify its work?** (health checks, build verification)
6. **How does the agent recover from mistakes?** (git rollback, approval gates)
7. **How does the UI know when agent changes state?** (shared store, file watching, events)
8. **What model tier does each agent type need?** (fast, balanced, powerful)
9. **How do agents share infrastructure?** (unified orchestrator, shared tools)